This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ressxms | |- ( ( K e. *MetSp /\ A e. V ) -> ( K |`s A ) e. *MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 2 | eqid | |- ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |
|
| 3 | 1 2 | xmsxmet | |- ( K e. *MetSp -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) ) |
| 4 | 3 | adantr | |- ( ( K e. *MetSp /\ A e. V ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) ) |
| 5 | xmetres | |- ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) e. ( *Met ` ( ( Base ` K ) i^i A ) ) ) |
|
| 6 | 4 5 | syl | |- ( ( K e. *MetSp /\ A e. V ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) e. ( *Met ` ( ( Base ` K ) i^i A ) ) ) |
| 7 | resres | |- ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) = ( ( dist ` K ) |` ( ( ( Base ` K ) X. ( Base ` K ) ) i^i ( A X. A ) ) ) |
|
| 8 | inxp | |- ( ( ( Base ` K ) X. ( Base ` K ) ) i^i ( A X. A ) ) = ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) |
|
| 9 | 8 | reseq2i | |- ( ( dist ` K ) |` ( ( ( Base ` K ) X. ( Base ` K ) ) i^i ( A X. A ) ) ) = ( ( dist ` K ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) |
| 10 | 7 9 | eqtri | |- ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) = ( ( dist ` K ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) |
| 11 | eqid | |- ( K |`s A ) = ( K |`s A ) |
|
| 12 | eqid | |- ( dist ` K ) = ( dist ` K ) |
|
| 13 | 11 12 | ressds | |- ( A e. V -> ( dist ` K ) = ( dist ` ( K |`s A ) ) ) |
| 14 | 13 | adantl | |- ( ( K e. *MetSp /\ A e. V ) -> ( dist ` K ) = ( dist ` ( K |`s A ) ) ) |
| 15 | incom | |- ( ( Base ` K ) i^i A ) = ( A i^i ( Base ` K ) ) |
|
| 16 | 11 1 | ressbas | |- ( A e. V -> ( A i^i ( Base ` K ) ) = ( Base ` ( K |`s A ) ) ) |
| 17 | 16 | adantl | |- ( ( K e. *MetSp /\ A e. V ) -> ( A i^i ( Base ` K ) ) = ( Base ` ( K |`s A ) ) ) |
| 18 | 15 17 | eqtrid | |- ( ( K e. *MetSp /\ A e. V ) -> ( ( Base ` K ) i^i A ) = ( Base ` ( K |`s A ) ) ) |
| 19 | 18 | sqxpeqd | |- ( ( K e. *MetSp /\ A e. V ) -> ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) = ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) |
| 20 | 14 19 | reseq12d | |- ( ( K e. *MetSp /\ A e. V ) -> ( ( dist ` K ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) = ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) ) |
| 21 | 10 20 | eqtrid | |- ( ( K e. *MetSp /\ A e. V ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) = ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) ) |
| 22 | 18 | fveq2d | |- ( ( K e. *MetSp /\ A e. V ) -> ( *Met ` ( ( Base ` K ) i^i A ) ) = ( *Met ` ( Base ` ( K |`s A ) ) ) ) |
| 23 | 6 21 22 | 3eltr3d | |- ( ( K e. *MetSp /\ A e. V ) -> ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) e. ( *Met ` ( Base ` ( K |`s A ) ) ) ) |
| 24 | eqid | |- ( TopOpen ` K ) = ( TopOpen ` K ) |
|
| 25 | 24 1 2 | xmstopn | |- ( K e. *MetSp -> ( TopOpen ` K ) = ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) |
| 26 | 25 | adantr | |- ( ( K e. *MetSp /\ A e. V ) -> ( TopOpen ` K ) = ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) |
| 27 | 26 | oveq1d | |- ( ( K e. *MetSp /\ A e. V ) -> ( ( TopOpen ` K ) |`t ( ( Base ` K ) i^i A ) ) = ( ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |`t ( ( Base ` K ) i^i A ) ) ) |
| 28 | inss1 | |- ( ( Base ` K ) i^i A ) C_ ( Base ` K ) |
|
| 29 | xpss12 | |- ( ( ( ( Base ` K ) i^i A ) C_ ( Base ` K ) /\ ( ( Base ` K ) i^i A ) C_ ( Base ` K ) ) -> ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) C_ ( ( Base ` K ) X. ( Base ` K ) ) ) |
|
| 30 | 28 28 29 | mp2an | |- ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) C_ ( ( Base ` K ) X. ( Base ` K ) ) |
| 31 | resabs1 | |- ( ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) C_ ( ( Base ` K ) X. ( Base ` K ) ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) = ( ( dist ` K ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) ) |
|
| 32 | 30 31 | ax-mp | |- ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) = ( ( dist ` K ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) |
| 33 | 10 32 | eqtr4i | |- ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) = ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) |
| 34 | eqid | |- ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) = ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |
|
| 35 | eqid | |- ( MetOpen ` ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) ) = ( MetOpen ` ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) ) |
|
| 36 | 33 34 35 | metrest | |- ( ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) /\ ( ( Base ` K ) i^i A ) C_ ( Base ` K ) ) -> ( ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |`t ( ( Base ` K ) i^i A ) ) = ( MetOpen ` ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) ) ) |
| 37 | 4 28 36 | sylancl | |- ( ( K e. *MetSp /\ A e. V ) -> ( ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |`t ( ( Base ` K ) i^i A ) ) = ( MetOpen ` ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) ) ) |
| 38 | 27 37 | eqtrd | |- ( ( K e. *MetSp /\ A e. V ) -> ( ( TopOpen ` K ) |`t ( ( Base ` K ) i^i A ) ) = ( MetOpen ` ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) ) ) |
| 39 | xmstps | |- ( K e. *MetSp -> K e. TopSp ) |
|
| 40 | 1 24 | tpsuni | |- ( K e. TopSp -> ( Base ` K ) = U. ( TopOpen ` K ) ) |
| 41 | 39 40 | syl | |- ( K e. *MetSp -> ( Base ` K ) = U. ( TopOpen ` K ) ) |
| 42 | 41 | adantr | |- ( ( K e. *MetSp /\ A e. V ) -> ( Base ` K ) = U. ( TopOpen ` K ) ) |
| 43 | 42 | ineq2d | |- ( ( K e. *MetSp /\ A e. V ) -> ( A i^i ( Base ` K ) ) = ( A i^i U. ( TopOpen ` K ) ) ) |
| 44 | 15 43 | eqtrid | |- ( ( K e. *MetSp /\ A e. V ) -> ( ( Base ` K ) i^i A ) = ( A i^i U. ( TopOpen ` K ) ) ) |
| 45 | 44 | oveq2d | |- ( ( K e. *MetSp /\ A e. V ) -> ( ( TopOpen ` K ) |`t ( ( Base ` K ) i^i A ) ) = ( ( TopOpen ` K ) |`t ( A i^i U. ( TopOpen ` K ) ) ) ) |
| 46 | 1 24 | istps | |- ( K e. TopSp <-> ( TopOpen ` K ) e. ( TopOn ` ( Base ` K ) ) ) |
| 47 | 39 46 | sylib | |- ( K e. *MetSp -> ( TopOpen ` K ) e. ( TopOn ` ( Base ` K ) ) ) |
| 48 | eqid | |- U. ( TopOpen ` K ) = U. ( TopOpen ` K ) |
|
| 49 | 48 | restin | |- ( ( ( TopOpen ` K ) e. ( TopOn ` ( Base ` K ) ) /\ A e. V ) -> ( ( TopOpen ` K ) |`t A ) = ( ( TopOpen ` K ) |`t ( A i^i U. ( TopOpen ` K ) ) ) ) |
| 50 | 47 49 | sylan | |- ( ( K e. *MetSp /\ A e. V ) -> ( ( TopOpen ` K ) |`t A ) = ( ( TopOpen ` K ) |`t ( A i^i U. ( TopOpen ` K ) ) ) ) |
| 51 | 45 50 | eqtr4d | |- ( ( K e. *MetSp /\ A e. V ) -> ( ( TopOpen ` K ) |`t ( ( Base ` K ) i^i A ) ) = ( ( TopOpen ` K ) |`t A ) ) |
| 52 | 21 | fveq2d | |- ( ( K e. *MetSp /\ A e. V ) -> ( MetOpen ` ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) ) = ( MetOpen ` ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) ) ) |
| 53 | 38 51 52 | 3eqtr3d | |- ( ( K e. *MetSp /\ A e. V ) -> ( ( TopOpen ` K ) |`t A ) = ( MetOpen ` ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) ) ) |
| 54 | 11 24 | resstopn | |- ( ( TopOpen ` K ) |`t A ) = ( TopOpen ` ( K |`s A ) ) |
| 55 | eqid | |- ( Base ` ( K |`s A ) ) = ( Base ` ( K |`s A ) ) |
|
| 56 | eqid | |- ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) = ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) |
|
| 57 | 54 55 56 | isxms2 | |- ( ( K |`s A ) e. *MetSp <-> ( ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) e. ( *Met ` ( Base ` ( K |`s A ) ) ) /\ ( ( TopOpen ` K ) |`t A ) = ( MetOpen ` ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) ) ) ) |
| 58 | 23 53 57 | sylanbrc | |- ( ( K e. *MetSp /\ A e. V ) -> ( K |`s A ) e. *MetSp ) |