This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate " <. X , D >. is an extended metric space" with underlying set X and distance function D . (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isms.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐾 ) | |
| isms.x | ⊢ 𝑋 = ( Base ‘ 𝐾 ) | ||
| isms.d | ⊢ 𝐷 = ( ( dist ‘ 𝐾 ) ↾ ( 𝑋 × 𝑋 ) ) | ||
| Assertion | isxms2 | ⊢ ( 𝐾 ∈ ∞MetSp ↔ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isms.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐾 ) | |
| 2 | isms.x | ⊢ 𝑋 = ( Base ‘ 𝐾 ) | |
| 3 | isms.d | ⊢ 𝐷 = ( ( dist ‘ 𝐾 ) ↾ ( 𝑋 × 𝑋 ) ) | |
| 4 | 1 2 3 | isxms | ⊢ ( 𝐾 ∈ ∞MetSp ↔ ( 𝐾 ∈ TopSp ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ) |
| 5 | 2 1 | istps | ⊢ ( 𝐾 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 6 | df-mopn | ⊢ MetOpen = ( 𝑥 ∈ ∪ ran ∞Met ↦ ( topGen ‘ ran ( ball ‘ 𝑥 ) ) ) | |
| 7 | 6 | dmmptss | ⊢ dom MetOpen ⊆ ∪ ran ∞Met |
| 8 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝐽 = ( MetOpen ‘ 𝐷 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → 𝑋 ∈ 𝐽 ) |
| 10 | simpl | ⊢ ( ( 𝐽 = ( MetOpen ‘ 𝐷 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐽 = ( MetOpen ‘ 𝐷 ) ) | |
| 11 | 9 10 | eleqtrd | ⊢ ( ( 𝐽 = ( MetOpen ‘ 𝐷 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → 𝑋 ∈ ( MetOpen ‘ 𝐷 ) ) |
| 12 | elfvdm | ⊢ ( 𝑋 ∈ ( MetOpen ‘ 𝐷 ) → 𝐷 ∈ dom MetOpen ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝐽 = ( MetOpen ‘ 𝐷 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐷 ∈ dom MetOpen ) |
| 14 | 7 13 | sselid | ⊢ ( ( 𝐽 = ( MetOpen ‘ 𝐷 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐷 ∈ ∪ ran ∞Met ) |
| 15 | xmetunirn | ⊢ ( 𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) | |
| 16 | 14 15 | sylib | ⊢ ( ( 𝐽 = ( MetOpen ‘ 𝐷 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) |
| 17 | eqid | ⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) | |
| 18 | 17 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) → ( MetOpen ‘ 𝐷 ) ∈ ( TopOn ‘ dom dom 𝐷 ) ) |
| 19 | 16 18 | syl | ⊢ ( ( 𝐽 = ( MetOpen ‘ 𝐷 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( MetOpen ‘ 𝐷 ) ∈ ( TopOn ‘ dom dom 𝐷 ) ) |
| 20 | 10 19 | eqeltrd | ⊢ ( ( 𝐽 = ( MetOpen ‘ 𝐷 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ dom dom 𝐷 ) ) |
| 21 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ dom dom 𝐷 ) → dom dom 𝐷 = ∪ 𝐽 ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝐽 = ( MetOpen ‘ 𝐷 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → dom dom 𝐷 = ∪ 𝐽 ) |
| 23 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 24 | 23 | adantl | ⊢ ( ( 𝐽 = ( MetOpen ‘ 𝐷 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → 𝑋 = ∪ 𝐽 ) |
| 25 | 22 24 | eqtr4d | ⊢ ( ( 𝐽 = ( MetOpen ‘ 𝐷 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → dom dom 𝐷 = 𝑋 ) |
| 26 | 25 | fveq2d | ⊢ ( ( 𝐽 = ( MetOpen ‘ 𝐷 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( ∞Met ‘ dom dom 𝐷 ) = ( ∞Met ‘ 𝑋 ) ) |
| 27 | 16 26 | eleqtrd | ⊢ ( ( 𝐽 = ( MetOpen ‘ 𝐷 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 28 | 27 | ex | ⊢ ( 𝐽 = ( MetOpen ‘ 𝐷 ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ) |
| 29 | 17 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( MetOpen ‘ 𝐷 ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 30 | eleq1 | ⊢ ( 𝐽 = ( MetOpen ‘ 𝐷 ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ ( MetOpen ‘ 𝐷 ) ∈ ( TopOn ‘ 𝑋 ) ) ) | |
| 31 | 29 30 | imbitrrid | ⊢ ( 𝐽 = ( MetOpen ‘ 𝐷 ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ) |
| 32 | 28 31 | impbid | ⊢ ( 𝐽 = ( MetOpen ‘ 𝐷 ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ) |
| 33 | 5 32 | bitrid | ⊢ ( 𝐽 = ( MetOpen ‘ 𝐷 ) → ( 𝐾 ∈ TopSp ↔ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ) |
| 34 | 33 | pm5.32ri | ⊢ ( ( 𝐾 ∈ TopSp ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ↔ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ) |
| 35 | 4 34 | bitri | ⊢ ( 𝐾 ∈ ∞MetSp ↔ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ 𝐷 ) ) ) |