This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | restin.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | restin | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝐽 ↾t 𝐴 ) = ( 𝐽 ↾t ( 𝐴 ∩ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restin.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | uniexg | ⊢ ( 𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V ) | |
| 3 | 1 2 | eqeltrid | ⊢ ( 𝐽 ∈ 𝑉 → 𝑋 ∈ V ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → 𝑋 ∈ V ) |
| 5 | restco | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑋 ∈ V ∧ 𝐴 ∈ 𝑊 ) → ( ( 𝐽 ↾t 𝑋 ) ↾t 𝐴 ) = ( 𝐽 ↾t ( 𝑋 ∩ 𝐴 ) ) ) | |
| 6 | 5 | 3com23 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑋 ∈ V ) → ( ( 𝐽 ↾t 𝑋 ) ↾t 𝐴 ) = ( 𝐽 ↾t ( 𝑋 ∩ 𝐴 ) ) ) |
| 7 | 4 6 | mpd3an3 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ( 𝐽 ↾t 𝑋 ) ↾t 𝐴 ) = ( 𝐽 ↾t ( 𝑋 ∩ 𝐴 ) ) ) |
| 8 | 1 | restid | ⊢ ( 𝐽 ∈ 𝑉 → ( 𝐽 ↾t 𝑋 ) = 𝐽 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝐽 ↾t 𝑋 ) = 𝐽 ) |
| 10 | 9 | oveq1d | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ( 𝐽 ↾t 𝑋 ) ↾t 𝐴 ) = ( 𝐽 ↾t 𝐴 ) ) |
| 11 | incom | ⊢ ( 𝑋 ∩ 𝐴 ) = ( 𝐴 ∩ 𝑋 ) | |
| 12 | 11 | oveq2i | ⊢ ( 𝐽 ↾t ( 𝑋 ∩ 𝐴 ) ) = ( 𝐽 ↾t ( 𝐴 ∩ 𝑋 ) ) |
| 13 | 12 | a1i | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝐽 ↾t ( 𝑋 ∩ 𝐴 ) ) = ( 𝐽 ↾t ( 𝐴 ∩ 𝑋 ) ) ) |
| 14 | 7 10 13 | 3eqtr3d | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝐽 ↾t 𝐴 ) = ( 𝐽 ↾t ( 𝐴 ∩ 𝑋 ) ) ) |