This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ressms | ⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐾 ↾s 𝐴 ) ∈ MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msxms | ⊢ ( 𝐾 ∈ MetSp → 𝐾 ∈ ∞MetSp ) | |
| 2 | ressxms | ⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐾 ↾s 𝐴 ) ∈ ∞MetSp ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐾 ↾s 𝐴 ) ∈ ∞MetSp ) |
| 4 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 5 | eqid | ⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) | |
| 6 | 4 5 | msmet | ⊢ ( 𝐾 ∈ MetSp → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) ) |
| 8 | metres | ⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( Met ‘ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( Met ‘ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
| 10 | resres | ⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) | |
| 11 | inxp | ⊢ ( ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) | |
| 12 | 11 | reseq2i | ⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
| 13 | 10 12 | eqtri | ⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
| 14 | eqid | ⊢ ( 𝐾 ↾s 𝐴 ) = ( 𝐾 ↾s 𝐴 ) | |
| 15 | eqid | ⊢ ( dist ‘ 𝐾 ) = ( dist ‘ 𝐾 ) | |
| 16 | 14 15 | ressds | ⊢ ( 𝐴 ∈ 𝑉 → ( dist ‘ 𝐾 ) = ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( dist ‘ 𝐾 ) = ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 18 | incom | ⊢ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) = ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) | |
| 19 | 14 4 | ressbas | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 21 | 18 20 | eqtrid | ⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 22 | 21 | sqxpeqd | ⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
| 23 | 17 22 | reseq12d | ⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) = ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) |
| 24 | 13 23 | eqtrid | ⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) |
| 25 | 21 | fveq2d | ⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( Met ‘ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( Met ‘ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
| 26 | 9 24 25 | 3eltr3d | ⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ∈ ( Met ‘ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
| 27 | eqid | ⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) | |
| 28 | 14 27 | resstopn | ⊢ ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) = ( TopOpen ‘ ( 𝐾 ↾s 𝐴 ) ) |
| 29 | eqid | ⊢ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) | |
| 30 | eqid | ⊢ ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) = ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) | |
| 31 | 28 29 30 | isms | ⊢ ( ( 𝐾 ↾s 𝐴 ) ∈ MetSp ↔ ( ( 𝐾 ↾s 𝐴 ) ∈ ∞MetSp ∧ ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ∈ ( Met ‘ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) |
| 32 | 3 26 31 | sylanbrc | ⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐾 ↾s 𝐴 ) ∈ MetSp ) |