This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of TakeutiZaring p. 77. (Contributed by NM, 8-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1ordg | ⊢ ( 𝐵 ∈ dom 𝑅1 → ( 𝐴 ∈ 𝐵 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ 𝐴 ∈ 𝐵 ) → 𝐵 ∈ dom 𝑅1 ) | |
| 2 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 3 | 2 | simpri | ⊢ Lim dom 𝑅1 |
| 4 | limord | ⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) | |
| 5 | 3 4 | ax-mp | ⊢ Ord dom 𝑅1 |
| 6 | ordsson | ⊢ ( Ord dom 𝑅1 → dom 𝑅1 ⊆ On ) | |
| 7 | 5 6 | ax-mp | ⊢ dom 𝑅1 ⊆ On |
| 8 | 7 | sseli | ⊢ ( 𝐵 ∈ dom 𝑅1 → 𝐵 ∈ On ) |
| 9 | 1 8 | syl | ⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ 𝐴 ∈ 𝐵 ) → 𝐵 ∈ On ) |
| 10 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ On ) | |
| 11 | 8 10 | sylan | ⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ On ) |
| 12 | onsuc | ⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ On ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ 𝐴 ∈ 𝐵 ) → suc 𝐴 ∈ On ) |
| 14 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 15 | ordsucss | ⊢ ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
| 17 | 16 | imp | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → suc 𝐴 ⊆ 𝐵 ) |
| 18 | 8 17 | sylan | ⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ 𝐴 ∈ 𝐵 ) → suc 𝐴 ⊆ 𝐵 ) |
| 19 | eleq1 | ⊢ ( 𝑥 = suc 𝐴 → ( 𝑥 ∈ dom 𝑅1 ↔ suc 𝐴 ∈ dom 𝑅1 ) ) | |
| 20 | fveq2 | ⊢ ( 𝑥 = suc 𝐴 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ suc 𝐴 ) ) | |
| 21 | 20 | eleq2d | ⊢ ( 𝑥 = suc 𝐴 → ( ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) ) ) |
| 22 | 19 21 | imbi12d | ⊢ ( 𝑥 = suc 𝐴 → ( ( 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑥 ) ) ↔ ( suc 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) ) ) ) |
| 23 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ dom 𝑅1 ↔ 𝑦 ∈ dom 𝑅1 ) ) | |
| 24 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) | |
| 25 | 24 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 26 | 23 25 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑥 ) ) ↔ ( 𝑦 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 27 | eleq1 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1 ) ) | |
| 28 | fveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ suc 𝑦 ) ) | |
| 29 | 28 | eleq2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 30 | 27 29 | imbi12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑥 ) ) ↔ ( suc 𝑦 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
| 31 | eleq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ dom 𝑅1 ↔ 𝐵 ∈ dom 𝑅1 ) ) | |
| 32 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝐵 ) ) | |
| 33 | 32 | eleq2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 34 | 31 33 | imbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑥 ) ) ↔ ( 𝐵 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐵 ) ) ) ) |
| 35 | fvex | ⊢ ( 𝑅1 ‘ 𝐴 ) ∈ V | |
| 36 | 35 | pwid | ⊢ ( 𝑅1 ‘ 𝐴 ) ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) |
| 37 | limsuc | ⊢ ( Lim dom 𝑅1 → ( 𝐴 ∈ dom 𝑅1 ↔ suc 𝐴 ∈ dom 𝑅1 ) ) | |
| 38 | 3 37 | ax-mp | ⊢ ( 𝐴 ∈ dom 𝑅1 ↔ suc 𝐴 ∈ dom 𝑅1 ) |
| 39 | r1sucg | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝐴 ) = 𝒫 ( 𝑅1 ‘ 𝐴 ) ) | |
| 40 | 38 39 | sylbir | ⊢ ( suc 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝐴 ) = 𝒫 ( 𝑅1 ‘ 𝐴 ) ) |
| 41 | 36 40 | eleqtrrid | ⊢ ( suc 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) ) |
| 42 | 41 | a1i | ⊢ ( suc 𝐴 ∈ On → ( suc 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) ) ) |
| 43 | limsuc | ⊢ ( Lim dom 𝑅1 → ( 𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1 ) ) | |
| 44 | 3 43 | ax-mp | ⊢ ( 𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1 ) |
| 45 | r1tr | ⊢ Tr ( 𝑅1 ‘ 𝑦 ) | |
| 46 | dftr4 | ⊢ ( Tr ( 𝑅1 ‘ 𝑦 ) ↔ ( 𝑅1 ‘ 𝑦 ) ⊆ 𝒫 ( 𝑅1 ‘ 𝑦 ) ) | |
| 47 | 45 46 | mpbi | ⊢ ( 𝑅1 ‘ 𝑦 ) ⊆ 𝒫 ( 𝑅1 ‘ 𝑦 ) |
| 48 | r1sucg | ⊢ ( 𝑦 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝑦 ) = 𝒫 ( 𝑅1 ‘ 𝑦 ) ) | |
| 49 | 47 48 | sseqtrrid | ⊢ ( 𝑦 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝑦 ) ⊆ ( 𝑅1 ‘ suc 𝑦 ) ) |
| 50 | 49 | sseld | ⊢ ( 𝑦 ∈ dom 𝑅1 → ( ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑦 ) → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 51 | 50 | a2i | ⊢ ( ( 𝑦 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝑦 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 52 | 44 51 | biimtrrid | ⊢ ( ( 𝑦 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑦 ) ) → ( suc 𝑦 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝑦 ) ) ) |
| 53 | 52 | a1i | ⊢ ( ( ( 𝑦 ∈ On ∧ suc 𝐴 ∈ On ) ∧ suc 𝐴 ⊆ 𝑦 ) → ( ( 𝑦 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑦 ) ) → ( suc 𝑦 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝑦 ) ) ) ) |
| 54 | simprl | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ ( suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) ) → suc 𝐴 ⊆ 𝑥 ) | |
| 55 | simplr | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ ( suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) ) → suc 𝐴 ∈ On ) | |
| 56 | onsucb | ⊢ ( 𝐴 ∈ On ↔ suc 𝐴 ∈ On ) | |
| 57 | 55 56 | sylibr | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ ( suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) ) → 𝐴 ∈ On ) |
| 58 | limord | ⊢ ( Lim 𝑥 → Ord 𝑥 ) | |
| 59 | 58 | ad2antrr | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ ( suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) ) → Ord 𝑥 ) |
| 60 | ordelsuc | ⊢ ( ( 𝐴 ∈ On ∧ Ord 𝑥 ) → ( 𝐴 ∈ 𝑥 ↔ suc 𝐴 ⊆ 𝑥 ) ) | |
| 61 | 57 59 60 | syl2anc | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ ( suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) ) → ( 𝐴 ∈ 𝑥 ↔ suc 𝐴 ⊆ 𝑥 ) ) |
| 62 | 54 61 | mpbird | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ ( suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) ) → 𝐴 ∈ 𝑥 ) |
| 63 | limsuc | ⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 ↔ suc 𝐴 ∈ 𝑥 ) ) | |
| 64 | 63 | ad2antrr | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ ( suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) ) → ( 𝐴 ∈ 𝑥 ↔ suc 𝐴 ∈ 𝑥 ) ) |
| 65 | 62 64 | mpbid | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ ( suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) ) → suc 𝐴 ∈ 𝑥 ) |
| 66 | simprr | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ ( suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) ) → 𝑥 ∈ dom 𝑅1 ) | |
| 67 | ordtr1 | ⊢ ( Ord dom 𝑅1 → ( ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) → 𝐴 ∈ dom 𝑅1 ) ) | |
| 68 | 5 67 | ax-mp | ⊢ ( ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) → 𝐴 ∈ dom 𝑅1 ) |
| 69 | 62 66 68 | syl2anc | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ ( suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) ) → 𝐴 ∈ dom 𝑅1 ) |
| 70 | 69 39 | syl | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ ( suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) ) → ( 𝑅1 ‘ suc 𝐴 ) = 𝒫 ( 𝑅1 ‘ 𝐴 ) ) |
| 71 | 36 70 | eleqtrrid | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ ( suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) ) → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) ) |
| 72 | fveq2 | ⊢ ( 𝑦 = suc 𝐴 → ( 𝑅1 ‘ 𝑦 ) = ( 𝑅1 ‘ suc 𝐴 ) ) | |
| 73 | 72 | eleq2d | ⊢ ( 𝑦 = suc 𝐴 → ( ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑦 ) ↔ ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) ) ) |
| 74 | 73 | rspcev | ⊢ ( ( suc 𝐴 ∈ 𝑥 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) ) → ∃ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 75 | 65 71 74 | syl2anc | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ ( suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) ) → ∃ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 76 | eliun | ⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑦 ) ) | |
| 77 | 75 76 | sylibr | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ ( suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) ) → ( 𝑅1 ‘ 𝐴 ) ∈ ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) |
| 78 | simpll | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ ( suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) ) → Lim 𝑥 ) | |
| 79 | r1limg | ⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ Lim 𝑥 ) → ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) | |
| 80 | 66 78 79 | syl2anc | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ ( suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) ) → ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) |
| 81 | 77 80 | eleqtrrd | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ ( suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) ) → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 82 | 81 | expr | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ suc 𝐴 ⊆ 𝑥 ) → ( 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 83 | 82 | a1d | ⊢ ( ( ( Lim 𝑥 ∧ suc 𝐴 ∈ On ) ∧ suc 𝐴 ⊆ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( suc 𝐴 ⊆ 𝑦 → ( 𝑦 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑦 ) ) ) → ( 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑥 ) ) ) ) |
| 84 | 22 26 30 34 42 53 83 | tfindsg | ⊢ ( ( ( 𝐵 ∈ On ∧ suc 𝐴 ∈ On ) ∧ suc 𝐴 ⊆ 𝐵 ) → ( 𝐵 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 85 | 84 | impr | ⊢ ( ( ( 𝐵 ∈ On ∧ suc 𝐴 ∈ On ) ∧ ( suc 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ dom 𝑅1 ) ) → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐵 ) ) |
| 86 | 9 13 18 1 85 | syl22anc | ⊢ ( ( 𝐵 ∈ dom 𝑅1 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐵 ) ) |
| 87 | 86 | ex | ⊢ ( 𝐵 ∈ dom 𝑅1 → ( 𝐴 ∈ 𝐵 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐵 ) ) ) |