This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of TakeutiZaring p. 77. (Contributed by NM, 8-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1ordg | |- ( B e. dom R1 -> ( A e. B -> ( R1 ` A ) e. ( R1 ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( B e. dom R1 /\ A e. B ) -> B e. dom R1 ) |
|
| 2 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 3 | 2 | simpri | |- Lim dom R1 |
| 4 | limord | |- ( Lim dom R1 -> Ord dom R1 ) |
|
| 5 | 3 4 | ax-mp | |- Ord dom R1 |
| 6 | ordsson | |- ( Ord dom R1 -> dom R1 C_ On ) |
|
| 7 | 5 6 | ax-mp | |- dom R1 C_ On |
| 8 | 7 | sseli | |- ( B e. dom R1 -> B e. On ) |
| 9 | 1 8 | syl | |- ( ( B e. dom R1 /\ A e. B ) -> B e. On ) |
| 10 | onelon | |- ( ( B e. On /\ A e. B ) -> A e. On ) |
|
| 11 | 8 10 | sylan | |- ( ( B e. dom R1 /\ A e. B ) -> A e. On ) |
| 12 | onsuc | |- ( A e. On -> suc A e. On ) |
|
| 13 | 11 12 | syl | |- ( ( B e. dom R1 /\ A e. B ) -> suc A e. On ) |
| 14 | eloni | |- ( B e. On -> Ord B ) |
|
| 15 | ordsucss | |- ( Ord B -> ( A e. B -> suc A C_ B ) ) |
|
| 16 | 14 15 | syl | |- ( B e. On -> ( A e. B -> suc A C_ B ) ) |
| 17 | 16 | imp | |- ( ( B e. On /\ A e. B ) -> suc A C_ B ) |
| 18 | 8 17 | sylan | |- ( ( B e. dom R1 /\ A e. B ) -> suc A C_ B ) |
| 19 | eleq1 | |- ( x = suc A -> ( x e. dom R1 <-> suc A e. dom R1 ) ) |
|
| 20 | fveq2 | |- ( x = suc A -> ( R1 ` x ) = ( R1 ` suc A ) ) |
|
| 21 | 20 | eleq2d | |- ( x = suc A -> ( ( R1 ` A ) e. ( R1 ` x ) <-> ( R1 ` A ) e. ( R1 ` suc A ) ) ) |
| 22 | 19 21 | imbi12d | |- ( x = suc A -> ( ( x e. dom R1 -> ( R1 ` A ) e. ( R1 ` x ) ) <-> ( suc A e. dom R1 -> ( R1 ` A ) e. ( R1 ` suc A ) ) ) ) |
| 23 | eleq1 | |- ( x = y -> ( x e. dom R1 <-> y e. dom R1 ) ) |
|
| 24 | fveq2 | |- ( x = y -> ( R1 ` x ) = ( R1 ` y ) ) |
|
| 25 | 24 | eleq2d | |- ( x = y -> ( ( R1 ` A ) e. ( R1 ` x ) <-> ( R1 ` A ) e. ( R1 ` y ) ) ) |
| 26 | 23 25 | imbi12d | |- ( x = y -> ( ( x e. dom R1 -> ( R1 ` A ) e. ( R1 ` x ) ) <-> ( y e. dom R1 -> ( R1 ` A ) e. ( R1 ` y ) ) ) ) |
| 27 | eleq1 | |- ( x = suc y -> ( x e. dom R1 <-> suc y e. dom R1 ) ) |
|
| 28 | fveq2 | |- ( x = suc y -> ( R1 ` x ) = ( R1 ` suc y ) ) |
|
| 29 | 28 | eleq2d | |- ( x = suc y -> ( ( R1 ` A ) e. ( R1 ` x ) <-> ( R1 ` A ) e. ( R1 ` suc y ) ) ) |
| 30 | 27 29 | imbi12d | |- ( x = suc y -> ( ( x e. dom R1 -> ( R1 ` A ) e. ( R1 ` x ) ) <-> ( suc y e. dom R1 -> ( R1 ` A ) e. ( R1 ` suc y ) ) ) ) |
| 31 | eleq1 | |- ( x = B -> ( x e. dom R1 <-> B e. dom R1 ) ) |
|
| 32 | fveq2 | |- ( x = B -> ( R1 ` x ) = ( R1 ` B ) ) |
|
| 33 | 32 | eleq2d | |- ( x = B -> ( ( R1 ` A ) e. ( R1 ` x ) <-> ( R1 ` A ) e. ( R1 ` B ) ) ) |
| 34 | 31 33 | imbi12d | |- ( x = B -> ( ( x e. dom R1 -> ( R1 ` A ) e. ( R1 ` x ) ) <-> ( B e. dom R1 -> ( R1 ` A ) e. ( R1 ` B ) ) ) ) |
| 35 | fvex | |- ( R1 ` A ) e. _V |
|
| 36 | 35 | pwid | |- ( R1 ` A ) e. ~P ( R1 ` A ) |
| 37 | limsuc | |- ( Lim dom R1 -> ( A e. dom R1 <-> suc A e. dom R1 ) ) |
|
| 38 | 3 37 | ax-mp | |- ( A e. dom R1 <-> suc A e. dom R1 ) |
| 39 | r1sucg | |- ( A e. dom R1 -> ( R1 ` suc A ) = ~P ( R1 ` A ) ) |
|
| 40 | 38 39 | sylbir | |- ( suc A e. dom R1 -> ( R1 ` suc A ) = ~P ( R1 ` A ) ) |
| 41 | 36 40 | eleqtrrid | |- ( suc A e. dom R1 -> ( R1 ` A ) e. ( R1 ` suc A ) ) |
| 42 | 41 | a1i | |- ( suc A e. On -> ( suc A e. dom R1 -> ( R1 ` A ) e. ( R1 ` suc A ) ) ) |
| 43 | limsuc | |- ( Lim dom R1 -> ( y e. dom R1 <-> suc y e. dom R1 ) ) |
|
| 44 | 3 43 | ax-mp | |- ( y e. dom R1 <-> suc y e. dom R1 ) |
| 45 | r1tr | |- Tr ( R1 ` y ) |
|
| 46 | dftr4 | |- ( Tr ( R1 ` y ) <-> ( R1 ` y ) C_ ~P ( R1 ` y ) ) |
|
| 47 | 45 46 | mpbi | |- ( R1 ` y ) C_ ~P ( R1 ` y ) |
| 48 | r1sucg | |- ( y e. dom R1 -> ( R1 ` suc y ) = ~P ( R1 ` y ) ) |
|
| 49 | 47 48 | sseqtrrid | |- ( y e. dom R1 -> ( R1 ` y ) C_ ( R1 ` suc y ) ) |
| 50 | 49 | sseld | |- ( y e. dom R1 -> ( ( R1 ` A ) e. ( R1 ` y ) -> ( R1 ` A ) e. ( R1 ` suc y ) ) ) |
| 51 | 50 | a2i | |- ( ( y e. dom R1 -> ( R1 ` A ) e. ( R1 ` y ) ) -> ( y e. dom R1 -> ( R1 ` A ) e. ( R1 ` suc y ) ) ) |
| 52 | 44 51 | biimtrrid | |- ( ( y e. dom R1 -> ( R1 ` A ) e. ( R1 ` y ) ) -> ( suc y e. dom R1 -> ( R1 ` A ) e. ( R1 ` suc y ) ) ) |
| 53 | 52 | a1i | |- ( ( ( y e. On /\ suc A e. On ) /\ suc A C_ y ) -> ( ( y e. dom R1 -> ( R1 ` A ) e. ( R1 ` y ) ) -> ( suc y e. dom R1 -> ( R1 ` A ) e. ( R1 ` suc y ) ) ) ) |
| 54 | simprl | |- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> suc A C_ x ) |
|
| 55 | simplr | |- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> suc A e. On ) |
|
| 56 | onsucb | |- ( A e. On <-> suc A e. On ) |
|
| 57 | 55 56 | sylibr | |- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> A e. On ) |
| 58 | limord | |- ( Lim x -> Ord x ) |
|
| 59 | 58 | ad2antrr | |- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> Ord x ) |
| 60 | ordelsuc | |- ( ( A e. On /\ Ord x ) -> ( A e. x <-> suc A C_ x ) ) |
|
| 61 | 57 59 60 | syl2anc | |- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> ( A e. x <-> suc A C_ x ) ) |
| 62 | 54 61 | mpbird | |- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> A e. x ) |
| 63 | limsuc | |- ( Lim x -> ( A e. x <-> suc A e. x ) ) |
|
| 64 | 63 | ad2antrr | |- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> ( A e. x <-> suc A e. x ) ) |
| 65 | 62 64 | mpbid | |- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> suc A e. x ) |
| 66 | simprr | |- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> x e. dom R1 ) |
|
| 67 | ordtr1 | |- ( Ord dom R1 -> ( ( A e. x /\ x e. dom R1 ) -> A e. dom R1 ) ) |
|
| 68 | 5 67 | ax-mp | |- ( ( A e. x /\ x e. dom R1 ) -> A e. dom R1 ) |
| 69 | 62 66 68 | syl2anc | |- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> A e. dom R1 ) |
| 70 | 69 39 | syl | |- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> ( R1 ` suc A ) = ~P ( R1 ` A ) ) |
| 71 | 36 70 | eleqtrrid | |- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> ( R1 ` A ) e. ( R1 ` suc A ) ) |
| 72 | fveq2 | |- ( y = suc A -> ( R1 ` y ) = ( R1 ` suc A ) ) |
|
| 73 | 72 | eleq2d | |- ( y = suc A -> ( ( R1 ` A ) e. ( R1 ` y ) <-> ( R1 ` A ) e. ( R1 ` suc A ) ) ) |
| 74 | 73 | rspcev | |- ( ( suc A e. x /\ ( R1 ` A ) e. ( R1 ` suc A ) ) -> E. y e. x ( R1 ` A ) e. ( R1 ` y ) ) |
| 75 | 65 71 74 | syl2anc | |- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> E. y e. x ( R1 ` A ) e. ( R1 ` y ) ) |
| 76 | eliun | |- ( ( R1 ` A ) e. U_ y e. x ( R1 ` y ) <-> E. y e. x ( R1 ` A ) e. ( R1 ` y ) ) |
|
| 77 | 75 76 | sylibr | |- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> ( R1 ` A ) e. U_ y e. x ( R1 ` y ) ) |
| 78 | simpll | |- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> Lim x ) |
|
| 79 | r1limg | |- ( ( x e. dom R1 /\ Lim x ) -> ( R1 ` x ) = U_ y e. x ( R1 ` y ) ) |
|
| 80 | 66 78 79 | syl2anc | |- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> ( R1 ` x ) = U_ y e. x ( R1 ` y ) ) |
| 81 | 77 80 | eleqtrrd | |- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> ( R1 ` A ) e. ( R1 ` x ) ) |
| 82 | 81 | expr | |- ( ( ( Lim x /\ suc A e. On ) /\ suc A C_ x ) -> ( x e. dom R1 -> ( R1 ` A ) e. ( R1 ` x ) ) ) |
| 83 | 82 | a1d | |- ( ( ( Lim x /\ suc A e. On ) /\ suc A C_ x ) -> ( A. y e. x ( suc A C_ y -> ( y e. dom R1 -> ( R1 ` A ) e. ( R1 ` y ) ) ) -> ( x e. dom R1 -> ( R1 ` A ) e. ( R1 ` x ) ) ) ) |
| 84 | 22 26 30 34 42 53 83 | tfindsg | |- ( ( ( B e. On /\ suc A e. On ) /\ suc A C_ B ) -> ( B e. dom R1 -> ( R1 ` A ) e. ( R1 ` B ) ) ) |
| 85 | 84 | impr | |- ( ( ( B e. On /\ suc A e. On ) /\ ( suc A C_ B /\ B e. dom R1 ) ) -> ( R1 ` A ) e. ( R1 ` B ) ) |
| 86 | 9 13 18 1 85 | syl22anc | |- ( ( B e. dom R1 /\ A e. B ) -> ( R1 ` A ) e. ( R1 ` B ) ) |
| 87 | 86 | ex | |- ( B e. dom R1 -> ( A e. B -> ( R1 ` A ) e. ( R1 ` B ) ) ) |