This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. The basis of this version is an arbitrary ordinal B instead of zero. Remark in TakeutiZaring p. 57. (Contributed by NM, 5-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tfindsg.1 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
| tfindsg.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | ||
| tfindsg.3 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝜑 ↔ 𝜃 ) ) | ||
| tfindsg.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) | ||
| tfindsg.5 | ⊢ ( 𝐵 ∈ On → 𝜓 ) | ||
| tfindsg.6 | ⊢ ( ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝑦 ) → ( 𝜒 → 𝜃 ) ) | ||
| tfindsg.7 | ⊢ ( ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ⊆ 𝑦 → 𝜒 ) → 𝜑 ) ) | ||
| Assertion | tfindsg | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfindsg.1 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | tfindsg.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | tfindsg.3 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝜑 ↔ 𝜃 ) ) | |
| 4 | tfindsg.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) | |
| 5 | tfindsg.5 | ⊢ ( 𝐵 ∈ On → 𝜓 ) | |
| 6 | tfindsg.6 | ⊢ ( ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝑦 ) → ( 𝜒 → 𝜃 ) ) | |
| 7 | tfindsg.7 | ⊢ ( ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ⊆ 𝑦 → 𝜒 ) → 𝜑 ) ) | |
| 8 | sseq2 | ⊢ ( 𝑥 = ∅ → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ ∅ ) ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝐵 = ∅ ∧ 𝑥 = ∅ ) → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ ∅ ) ) |
| 10 | eqeq2 | ⊢ ( 𝐵 = ∅ → ( 𝑥 = 𝐵 ↔ 𝑥 = ∅ ) ) | |
| 11 | 10 1 | biimtrrdi | ⊢ ( 𝐵 = ∅ → ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) ) |
| 12 | 11 | imp | ⊢ ( ( 𝐵 = ∅ ∧ 𝑥 = ∅ ) → ( 𝜑 ↔ 𝜓 ) ) |
| 13 | 9 12 | imbi12d | ⊢ ( ( 𝐵 = ∅ ∧ 𝑥 = ∅ ) → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) |
| 14 | 8 | imbi1d | ⊢ ( 𝑥 = ∅ → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜑 ) ) ) |
| 15 | ss0 | ⊢ ( 𝐵 ⊆ ∅ → 𝐵 = ∅ ) | |
| 16 | 15 | con3i | ⊢ ( ¬ 𝐵 = ∅ → ¬ 𝐵 ⊆ ∅ ) |
| 17 | 16 | pm2.21d | ⊢ ( ¬ 𝐵 = ∅ → ( 𝐵 ⊆ ∅ → ( 𝜑 ↔ 𝜓 ) ) ) |
| 18 | 17 | pm5.74d | ⊢ ( ¬ 𝐵 = ∅ → ( ( 𝐵 ⊆ ∅ → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) |
| 19 | 14 18 | sylan9bbr | ⊢ ( ( ¬ 𝐵 = ∅ ∧ 𝑥 = ∅ ) → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) |
| 20 | 13 19 | pm2.61ian | ⊢ ( 𝑥 = ∅ → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) |
| 21 | 20 | imbi2d | ⊢ ( 𝑥 = ∅ → ( ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → 𝜑 ) ) ↔ ( 𝐵 ∈ On → ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) ) |
| 22 | sseq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝑦 ) ) | |
| 23 | 22 2 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → 𝜑 ) ) ↔ ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) ) ) |
| 25 | sseq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ suc 𝑦 ) ) | |
| 26 | 25 3 | imbi12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) |
| 27 | 26 | imbi2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → 𝜑 ) ) ↔ ( 𝐵 ∈ On → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 28 | sseq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝐴 ) ) | |
| 29 | 28 4 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ 𝐴 → 𝜏 ) ) ) |
| 30 | 29 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → 𝜑 ) ) ↔ ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝐴 → 𝜏 ) ) ) ) |
| 31 | 5 | a1d | ⊢ ( 𝐵 ∈ On → ( 𝐵 ⊆ ∅ → 𝜓 ) ) |
| 32 | vex | ⊢ 𝑦 ∈ V | |
| 33 | 32 | sucex | ⊢ suc 𝑦 ∈ V |
| 34 | 33 | eqvinc | ⊢ ( suc 𝑦 = 𝐵 ↔ ∃ 𝑥 ( 𝑥 = suc 𝑦 ∧ 𝑥 = 𝐵 ) ) |
| 35 | 5 1 | imbitrrid | ⊢ ( 𝑥 = 𝐵 → ( 𝐵 ∈ On → 𝜑 ) ) |
| 36 | 3 | biimpd | ⊢ ( 𝑥 = suc 𝑦 → ( 𝜑 → 𝜃 ) ) |
| 37 | 35 36 | sylan9r | ⊢ ( ( 𝑥 = suc 𝑦 ∧ 𝑥 = 𝐵 ) → ( 𝐵 ∈ On → 𝜃 ) ) |
| 38 | 37 | exlimiv | ⊢ ( ∃ 𝑥 ( 𝑥 = suc 𝑦 ∧ 𝑥 = 𝐵 ) → ( 𝐵 ∈ On → 𝜃 ) ) |
| 39 | 34 38 | sylbi | ⊢ ( suc 𝑦 = 𝐵 → ( 𝐵 ∈ On → 𝜃 ) ) |
| 40 | 39 | eqcoms | ⊢ ( 𝐵 = suc 𝑦 → ( 𝐵 ∈ On → 𝜃 ) ) |
| 41 | 40 | imim2i | ⊢ ( ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( 𝐵 ⊆ suc 𝑦 → ( 𝐵 ∈ On → 𝜃 ) ) ) |
| 42 | 41 | a1d | ⊢ ( ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → ( 𝐵 ∈ On → 𝜃 ) ) ) ) |
| 43 | 42 | com4r | ⊢ ( 𝐵 ∈ On → ( ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 44 | 43 | adantl | ⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 45 | df-ne | ⊢ ( 𝐵 ≠ suc 𝑦 ↔ ¬ 𝐵 = suc 𝑦 ) | |
| 46 | 45 | anbi2i | ⊢ ( ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ↔ ( 𝐵 ⊆ suc 𝑦 ∧ ¬ 𝐵 = suc 𝑦 ) ) |
| 47 | annim | ⊢ ( ( 𝐵 ⊆ suc 𝑦 ∧ ¬ 𝐵 = suc 𝑦 ) ↔ ¬ ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) ) | |
| 48 | 46 47 | bitri | ⊢ ( ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ↔ ¬ ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) ) |
| 49 | onsssuc | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ⊆ 𝑦 ↔ 𝐵 ∈ suc 𝑦 ) ) | |
| 50 | onsuc | ⊢ ( 𝑦 ∈ On → suc 𝑦 ∈ On ) | |
| 51 | onelpss | ⊢ ( ( 𝐵 ∈ On ∧ suc 𝑦 ∈ On ) → ( 𝐵 ∈ suc 𝑦 ↔ ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ) ) | |
| 52 | 50 51 | sylan2 | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ∈ suc 𝑦 ↔ ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ) ) |
| 53 | 49 52 | bitrd | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ⊆ 𝑦 ↔ ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ) ) |
| 54 | 53 | ancoms | ⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝑦 ↔ ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ) ) |
| 55 | 6 | ex | ⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝑦 → ( 𝜒 → 𝜃 ) ) ) |
| 56 | 55 | a1ddd | ⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝑦 → ( 𝜒 → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 57 | 56 | a2d | ⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ 𝑦 → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 58 | 57 | com23 | ⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝑦 → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 59 | 54 58 | sylbird | ⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 60 | 48 59 | biimtrrid | ⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 61 | 44 60 | pm2.61d | ⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) |
| 62 | 61 | ex | ⊢ ( 𝑦 ∈ On → ( 𝐵 ∈ On → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 63 | 62 | a2d | ⊢ ( 𝑦 ∈ On → ( ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → ( 𝐵 ∈ On → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 64 | pm2.27 | ⊢ ( 𝐵 ∈ On → ( ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) ) | |
| 65 | 64 | ralimdv | ⊢ ( 𝐵 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → ∀ 𝑦 ∈ 𝑥 ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) ) |
| 66 | 65 | ad2antlr | ⊢ ( ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → ∀ 𝑦 ∈ 𝑥 ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) ) |
| 67 | 66 7 | syld | ⊢ ( ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → 𝜑 ) ) |
| 68 | 67 | exp31 | ⊢ ( Lim 𝑥 → ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → 𝜑 ) ) ) ) |
| 69 | 68 | com3l | ⊢ ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → 𝜑 ) ) ) ) |
| 70 | 69 | com4t | ⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → 𝜑 ) ) ) ) |
| 71 | 21 24 27 30 31 63 70 | tfinds | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝐴 → 𝜏 ) ) ) |
| 72 | 71 | imp31 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → 𝜏 ) |