This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Introduce k and remove the relative primality requirement. (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pythagtriplem19 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdnncl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
| 4 | nnz | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) | |
| 5 | nnz | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) | |
| 6 | gcddvds | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
| 9 | 8 | simpld | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
| 10 | 2 | nnzd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 11 | 2 | nnne0d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
| 12 | 4 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 13 | dvdsval2 | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) | |
| 14 | 10 11 12 13 | syl3anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
| 15 | 9 14 | mpbid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
| 16 | nnre | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) | |
| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
| 18 | 2 | nnred | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℝ ) |
| 19 | nngt0 | ⊢ ( 𝐴 ∈ ℕ → 0 < 𝐴 ) | |
| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 < 𝐴 ) |
| 21 | 2 | nngt0d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 < ( 𝐴 gcd 𝐵 ) ) |
| 22 | 17 18 20 21 | divgt0d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 < ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) |
| 23 | elnnz | ⊢ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ↔ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ 0 < ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ) | |
| 24 | 15 22 23 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
| 25 | 24 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
| 26 | 8 | simprd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
| 27 | 5 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
| 28 | dvdsval2 | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) | |
| 29 | 10 11 27 28 | syl3anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
| 30 | 26 29 | mpbid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
| 31 | nnre | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) | |
| 32 | 31 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
| 33 | nngt0 | ⊢ ( 𝐵 ∈ ℕ → 0 < 𝐵 ) | |
| 34 | 33 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 < 𝐵 ) |
| 35 | 32 18 34 21 | divgt0d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 < ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) |
| 36 | elnnz | ⊢ ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ↔ ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ 0 < ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) | |
| 37 | 30 35 36 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
| 38 | 37 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
| 39 | dvdssq | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ) ) | |
| 40 | 10 12 39 | syl2anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ) ) |
| 41 | dvdssq | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) ) | |
| 42 | 10 27 41 | syl2anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) ) |
| 43 | 40 42 | anbi12d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ↔ ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) ) ) |
| 44 | 8 43 | mpbid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) ) |
| 45 | 2 | nnsqcld | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℕ ) |
| 46 | 45 | nnzd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℤ ) |
| 47 | nnsqcl | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ↑ 2 ) ∈ ℕ ) | |
| 48 | 47 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 ↑ 2 ) ∈ ℕ ) |
| 49 | 48 | nnzd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
| 50 | nnsqcl | ⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ↑ 2 ) ∈ ℕ ) | |
| 51 | 50 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐵 ↑ 2 ) ∈ ℕ ) |
| 52 | 51 | nnzd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
| 53 | dvds2add | ⊢ ( ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℤ ∧ ( 𝐵 ↑ 2 ) ∈ ℤ ) → ( ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) | |
| 54 | 46 49 52 53 | syl3anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |
| 55 | 44 54 | mpd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
| 56 | 55 | adantr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
| 57 | simpr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) | |
| 58 | 56 57 | breqtrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐶 ↑ 2 ) ) |
| 59 | nnz | ⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℤ ) | |
| 60 | 59 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐶 ∈ ℤ ) |
| 61 | dvdssq | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐶 ↔ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐶 ↑ 2 ) ) ) | |
| 62 | 10 60 61 | syl2anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐶 ↔ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐶 ↑ 2 ) ) ) |
| 63 | 62 | adantr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐶 ↔ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐶 ↑ 2 ) ) ) |
| 64 | 58 63 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐶 ) |
| 65 | dvdsval2 | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐶 ↔ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) | |
| 66 | 10 11 60 65 | syl3anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐶 ↔ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
| 67 | 66 | adantr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐶 ↔ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
| 68 | 64 67 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
| 69 | nnre | ⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℝ ) | |
| 70 | 69 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐶 ∈ ℝ ) |
| 71 | nngt0 | ⊢ ( 𝐶 ∈ ℕ → 0 < 𝐶 ) | |
| 72 | 71 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 < 𝐶 ) |
| 73 | 70 18 72 21 | divgt0d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 < ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) |
| 74 | 73 | adantr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → 0 < ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) |
| 75 | elnnz | ⊢ ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ↔ ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ 0 < ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) ) | |
| 76 | 68 74 75 | sylanbrc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
| 77 | 76 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
| 78 | 48 | nncnd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 79 | 51 | nncnd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 80 | 45 | nncnd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℂ ) |
| 81 | 45 | nnne0d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ≠ 0 ) |
| 82 | 78 79 80 81 | divdird | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) ) |
| 83 | 82 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) ) |
| 84 | nncn | ⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℂ ) | |
| 85 | 84 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐶 ∈ ℂ ) |
| 86 | 2 | nncnd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 87 | 85 86 11 | sqdivd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) = ( ( 𝐶 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) |
| 88 | 87 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) = ( ( 𝐶 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) |
| 89 | oveq1 | ⊢ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) = ( ( 𝐶 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) | |
| 90 | 89 | 3ad2ant2 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) = ( ( 𝐶 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) |
| 91 | 88 90 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) |
| 92 | nncn | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) | |
| 93 | 92 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 94 | 93 86 11 | sqdivd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) |
| 95 | nncn | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) | |
| 96 | 95 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 97 | 96 86 11 | sqdivd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) = ( ( 𝐵 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) |
| 98 | 94 97 | oveq12d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) + ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) ) |
| 99 | 98 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) + ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) ) |
| 100 | 83 91 99 | 3eqtr4rd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) + ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) ) = ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) ) |
| 101 | gcddiv | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℕ ) ∧ ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) | |
| 102 | 12 27 2 8 101 | syl31anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
| 103 | 86 11 | dividd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ) |
| 104 | 102 103 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) |
| 105 | 104 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) |
| 106 | simp3 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) | |
| 107 | pythagtriplem18 | ⊢ ( ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) ∧ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) + ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) ) = ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) ∧ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ) → ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) | |
| 108 | 25 38 77 100 105 106 107 | syl312anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) |
| 109 | 93 86 11 | divcan2d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) · ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) = 𝐴 ) |
| 110 | 109 | eqcomd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ) |
| 111 | 96 86 11 | divcan2d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) · ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 𝐵 ) |
| 112 | 111 | eqcomd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
| 113 | 85 86 11 | divcan2d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) · ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) = 𝐶 ) |
| 114 | 113 | eqcomd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) ) |
| 115 | 110 112 114 | 3jca | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) ) ) |
| 116 | 115 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) ) ) |
| 117 | oveq2 | ⊢ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) · ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ) | |
| 118 | 117 | eqeq2d | ⊢ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) → ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ↔ 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ) ) |
| 119 | 118 | 3ad2ant1 | ⊢ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) → ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ↔ 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ) ) |
| 120 | oveq2 | ⊢ ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) → ( ( 𝐴 gcd 𝐵 ) · ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) | |
| 121 | 120 | eqeq2d | ⊢ ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) → ( 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ↔ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) ) |
| 122 | 121 | 3ad2ant2 | ⊢ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) → ( 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ↔ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) ) |
| 123 | oveq2 | ⊢ ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) · ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) | |
| 124 | 123 | eqeq2d | ⊢ ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) → ( 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) ↔ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
| 125 | 124 | 3ad2ant3 | ⊢ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) → ( 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) ↔ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
| 126 | 119 122 125 | 3anbi123d | ⊢ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) → ( ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) ) ↔ ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) |
| 127 | 116 126 | syl5ibcom | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) → ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) |
| 128 | 127 | reximdv | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ∃ 𝑚 ∈ ℕ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) → ∃ 𝑚 ∈ ℕ ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) |
| 129 | 128 | reximdv | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) → ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) |
| 130 | 108 129 | mpd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
| 131 | oveq1 | ⊢ ( 𝑘 = ( 𝐴 gcd 𝐵 ) → ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ) | |
| 132 | 131 | eqeq2d | ⊢ ( 𝑘 = ( 𝐴 gcd 𝐵 ) → ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↔ 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ) ) |
| 133 | oveq1 | ⊢ ( 𝑘 = ( 𝐴 gcd 𝐵 ) → ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) | |
| 134 | 133 | eqeq2d | ⊢ ( 𝑘 = ( 𝐴 gcd 𝐵 ) → ( 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↔ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) ) |
| 135 | oveq1 | ⊢ ( 𝑘 = ( 𝐴 gcd 𝐵 ) → ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) | |
| 136 | 135 | eqeq2d | ⊢ ( 𝑘 = ( 𝐴 gcd 𝐵 ) → ( 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ↔ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
| 137 | 132 134 136 | 3anbi123d | ⊢ ( 𝑘 = ( 𝐴 gcd 𝐵 ) → ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) |
| 138 | 137 | 2rexbidv | ⊢ ( 𝑘 = ( 𝐴 gcd 𝐵 ) → ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) |
| 139 | 138 | rspcev | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℕ ∧ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) → ∃ 𝑘 ∈ ℕ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
| 140 | 3 130 139 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ∃ 𝑘 ∈ ℕ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
| 141 | rexcom | ⊢ ( ∃ 𝑘 ∈ ℕ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑘 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) | |
| 142 | rexcom | ⊢ ( ∃ 𝑘 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) | |
| 143 | 142 | rexbii | ⊢ ( ∃ 𝑛 ∈ ℕ ∃ 𝑘 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
| 144 | 141 143 | bitri | ⊢ ( ∃ 𝑘 ∈ ℕ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
| 145 | 140 144 | sylib | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |