This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two numbers are divisible iff their squares are. (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdssq | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑀 = 0 → ( 𝑀 ∥ 𝑁 ↔ 0 ∥ 𝑁 ) ) | |
| 2 | sq0i | ⊢ ( 𝑀 = 0 → ( 𝑀 ↑ 2 ) = 0 ) | |
| 3 | 2 | breq1d | ⊢ ( 𝑀 = 0 → ( ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ↔ 0 ∥ ( 𝑁 ↑ 2 ) ) ) |
| 4 | 1 3 | bibi12d | ⊢ ( 𝑀 = 0 → ( ( 𝑀 ∥ 𝑁 ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ↔ ( 0 ∥ 𝑁 ↔ 0 ∥ ( 𝑁 ↑ 2 ) ) ) ) |
| 5 | nnabscl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( abs ‘ 𝑀 ) ∈ ℕ ) | |
| 6 | breq2 | ⊢ ( 𝑁 = 0 → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 0 ) ) | |
| 7 | sq0i | ⊢ ( 𝑁 = 0 → ( 𝑁 ↑ 2 ) = 0 ) | |
| 8 | 7 | breq2d | ⊢ ( 𝑁 = 0 → ( ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ 0 ) ) |
| 9 | 6 8 | bibi12d | ⊢ ( 𝑁 = 0 → ( ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ↔ ( ( abs ‘ 𝑀 ) ∥ 0 ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ 0 ) ) ) |
| 10 | nnabscl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( abs ‘ 𝑁 ) ∈ ℕ ) | |
| 11 | dvdssqlem | ⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ ( abs ‘ 𝑁 ) ∈ ℕ ) → ( ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( ( abs ‘ 𝑁 ) ↑ 2 ) ) ) | |
| 12 | 10 11 | sylan2 | ⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( ( abs ‘ 𝑁 ) ↑ 2 ) ) ) |
| 13 | nnz | ⊢ ( ( abs ‘ 𝑀 ) ∈ ℕ → ( abs ‘ 𝑀 ) ∈ ℤ ) | |
| 14 | simpl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → 𝑁 ∈ ℤ ) | |
| 15 | dvdsabsb | ⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ) ) | |
| 16 | 13 14 15 | syl2an | ⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ) ) |
| 17 | nnsqcl | ⊢ ( ( abs ‘ 𝑀 ) ∈ ℕ → ( ( abs ‘ 𝑀 ) ↑ 2 ) ∈ ℕ ) | |
| 18 | 17 | nnzd | ⊢ ( ( abs ‘ 𝑀 ) ∈ ℕ → ( ( abs ‘ 𝑀 ) ↑ 2 ) ∈ ℤ ) |
| 19 | zsqcl | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ↑ 2 ) ∈ ℤ ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝑁 ↑ 2 ) ∈ ℤ ) |
| 21 | dvdsabsb | ⊢ ( ( ( ( abs ‘ 𝑀 ) ↑ 2 ) ∈ ℤ ∧ ( 𝑁 ↑ 2 ) ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( abs ‘ ( 𝑁 ↑ 2 ) ) ) ) | |
| 22 | 18 20 21 | syl2an | ⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( abs ‘ ( 𝑁 ↑ 2 ) ) ) ) |
| 23 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 24 | 23 | adantr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → 𝑁 ∈ ℂ ) |
| 25 | abssq | ⊢ ( 𝑁 ∈ ℂ → ( ( abs ‘ 𝑁 ) ↑ 2 ) = ( abs ‘ ( 𝑁 ↑ 2 ) ) ) | |
| 26 | 24 25 | syl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( ( abs ‘ 𝑁 ) ↑ 2 ) = ( abs ‘ ( 𝑁 ↑ 2 ) ) ) |
| 27 | 26 | breq2d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( ( abs ‘ 𝑁 ) ↑ 2 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( abs ‘ ( 𝑁 ↑ 2 ) ) ) ) |
| 28 | 27 | adantl | ⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( ( abs ‘ 𝑁 ) ↑ 2 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( abs ‘ ( 𝑁 ↑ 2 ) ) ) ) |
| 29 | 22 28 | bitr4d | ⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( ( abs ‘ 𝑁 ) ↑ 2 ) ) ) |
| 30 | 12 16 29 | 3bitr4d | ⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 31 | 30 | anassrs | ⊢ ( ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ≠ 0 ) → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 32 | dvds0 | ⊢ ( ( abs ‘ 𝑀 ) ∈ ℤ → ( abs ‘ 𝑀 ) ∥ 0 ) | |
| 33 | zsqcl | ⊢ ( ( abs ‘ 𝑀 ) ∈ ℤ → ( ( abs ‘ 𝑀 ) ↑ 2 ) ∈ ℤ ) | |
| 34 | dvds0 | ⊢ ( ( ( abs ‘ 𝑀 ) ↑ 2 ) ∈ ℤ → ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ 0 ) | |
| 35 | 33 34 | syl | ⊢ ( ( abs ‘ 𝑀 ) ∈ ℤ → ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ 0 ) |
| 36 | 32 35 | 2thd | ⊢ ( ( abs ‘ 𝑀 ) ∈ ℤ → ( ( abs ‘ 𝑀 ) ∥ 0 ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ 0 ) ) |
| 37 | 13 36 | syl | ⊢ ( ( abs ‘ 𝑀 ) ∈ ℕ → ( ( abs ‘ 𝑀 ) ∥ 0 ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ 0 ) ) |
| 38 | 37 | adantr | ⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) ∥ 0 ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ 0 ) ) |
| 39 | 9 31 38 | pm2.61ne | ⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 40 | 5 39 | sylan | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 41 | absdvdsb | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) | |
| 42 | 41 | adantlr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) |
| 43 | zsqcl | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ↑ 2 ) ∈ ℤ ) | |
| 44 | 43 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( 𝑀 ↑ 2 ) ∈ ℤ ) |
| 45 | absdvdsb | ⊢ ( ( ( 𝑀 ↑ 2 ) ∈ ℤ ∧ ( 𝑁 ↑ 2 ) ∈ ℤ ) → ( ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ↔ ( abs ‘ ( 𝑀 ↑ 2 ) ) ∥ ( 𝑁 ↑ 2 ) ) ) | |
| 46 | 44 19 45 | syl2an | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ↔ ( abs ‘ ( 𝑀 ↑ 2 ) ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 47 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 48 | abssq | ⊢ ( 𝑀 ∈ ℂ → ( ( abs ‘ 𝑀 ) ↑ 2 ) = ( abs ‘ ( 𝑀 ↑ 2 ) ) ) | |
| 49 | 47 48 | syl | ⊢ ( 𝑀 ∈ ℤ → ( ( abs ‘ 𝑀 ) ↑ 2 ) = ( abs ‘ ( 𝑀 ↑ 2 ) ) ) |
| 50 | 49 | eqcomd | ⊢ ( 𝑀 ∈ ℤ → ( abs ‘ ( 𝑀 ↑ 2 ) ) = ( ( abs ‘ 𝑀 ) ↑ 2 ) ) |
| 51 | 50 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( abs ‘ ( 𝑀 ↑ 2 ) ) = ( ( abs ‘ 𝑀 ) ↑ 2 ) ) |
| 52 | 51 | breq1d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( ( abs ‘ ( 𝑀 ↑ 2 ) ) ∥ ( 𝑁 ↑ 2 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 53 | 52 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ ( 𝑀 ↑ 2 ) ) ∥ ( 𝑁 ↑ 2 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 54 | 46 53 | bitrd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 55 | 40 42 54 | 3bitr4d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 56 | 55 | an32s | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 57 | 0dvds | ⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) | |
| 58 | sqeq0 | ⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 ↑ 2 ) = 0 ↔ 𝑁 = 0 ) ) | |
| 59 | 23 58 | syl | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 ↑ 2 ) = 0 ↔ 𝑁 = 0 ) ) |
| 60 | 57 59 | bitr4d | ⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ ( 𝑁 ↑ 2 ) = 0 ) ) |
| 61 | 0dvds | ⊢ ( ( 𝑁 ↑ 2 ) ∈ ℤ → ( 0 ∥ ( 𝑁 ↑ 2 ) ↔ ( 𝑁 ↑ 2 ) = 0 ) ) | |
| 62 | 19 61 | syl | ⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ ( 𝑁 ↑ 2 ) ↔ ( 𝑁 ↑ 2 ) = 0 ) ) |
| 63 | 60 62 | bitr4d | ⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ 0 ∥ ( 𝑁 ↑ 2 ) ) ) |
| 64 | 63 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ∥ 𝑁 ↔ 0 ∥ ( 𝑁 ↑ 2 ) ) ) |
| 65 | 4 56 64 | pm2.61ne | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |