This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Introduce k and remove the relative primality requirement. (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pythagtriplem19 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdnncl | |- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. NN ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A gcd B ) e. NN ) |
| 3 | 2 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> ( A gcd B ) e. NN ) |
| 4 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 5 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 6 | gcddvds | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 8 | 7 | 3adant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 9 | 8 | simpld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A gcd B ) || A ) |
| 10 | 2 | nnzd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A gcd B ) e. ZZ ) |
| 11 | 2 | nnne0d | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A gcd B ) =/= 0 ) |
| 12 | 4 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. ZZ ) |
| 13 | dvdsval2 | |- ( ( ( A gcd B ) e. ZZ /\ ( A gcd B ) =/= 0 /\ A e. ZZ ) -> ( ( A gcd B ) || A <-> ( A / ( A gcd B ) ) e. ZZ ) ) |
|
| 14 | 10 11 12 13 | syl3anc | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A gcd B ) || A <-> ( A / ( A gcd B ) ) e. ZZ ) ) |
| 15 | 9 14 | mpbid | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A / ( A gcd B ) ) e. ZZ ) |
| 16 | nnre | |- ( A e. NN -> A e. RR ) |
|
| 17 | 16 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. RR ) |
| 18 | 2 | nnred | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A gcd B ) e. RR ) |
| 19 | nngt0 | |- ( A e. NN -> 0 < A ) |
|
| 20 | 19 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 < A ) |
| 21 | 2 | nngt0d | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 < ( A gcd B ) ) |
| 22 | 17 18 20 21 | divgt0d | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 < ( A / ( A gcd B ) ) ) |
| 23 | elnnz | |- ( ( A / ( A gcd B ) ) e. NN <-> ( ( A / ( A gcd B ) ) e. ZZ /\ 0 < ( A / ( A gcd B ) ) ) ) |
|
| 24 | 15 22 23 | sylanbrc | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A / ( A gcd B ) ) e. NN ) |
| 25 | 24 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> ( A / ( A gcd B ) ) e. NN ) |
| 26 | 8 | simprd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A gcd B ) || B ) |
| 27 | 5 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. ZZ ) |
| 28 | dvdsval2 | |- ( ( ( A gcd B ) e. ZZ /\ ( A gcd B ) =/= 0 /\ B e. ZZ ) -> ( ( A gcd B ) || B <-> ( B / ( A gcd B ) ) e. ZZ ) ) |
|
| 29 | 10 11 27 28 | syl3anc | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A gcd B ) || B <-> ( B / ( A gcd B ) ) e. ZZ ) ) |
| 30 | 26 29 | mpbid | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B / ( A gcd B ) ) e. ZZ ) |
| 31 | nnre | |- ( B e. NN -> B e. RR ) |
|
| 32 | 31 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. RR ) |
| 33 | nngt0 | |- ( B e. NN -> 0 < B ) |
|
| 34 | 33 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 < B ) |
| 35 | 32 18 34 21 | divgt0d | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 < ( B / ( A gcd B ) ) ) |
| 36 | elnnz | |- ( ( B / ( A gcd B ) ) e. NN <-> ( ( B / ( A gcd B ) ) e. ZZ /\ 0 < ( B / ( A gcd B ) ) ) ) |
|
| 37 | 30 35 36 | sylanbrc | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B / ( A gcd B ) ) e. NN ) |
| 38 | 37 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> ( B / ( A gcd B ) ) e. NN ) |
| 39 | dvdssq | |- ( ( ( A gcd B ) e. ZZ /\ A e. ZZ ) -> ( ( A gcd B ) || A <-> ( ( A gcd B ) ^ 2 ) || ( A ^ 2 ) ) ) |
|
| 40 | 10 12 39 | syl2anc | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A gcd B ) || A <-> ( ( A gcd B ) ^ 2 ) || ( A ^ 2 ) ) ) |
| 41 | dvdssq | |- ( ( ( A gcd B ) e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || B <-> ( ( A gcd B ) ^ 2 ) || ( B ^ 2 ) ) ) |
|
| 42 | 10 27 41 | syl2anc | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A gcd B ) || B <-> ( ( A gcd B ) ^ 2 ) || ( B ^ 2 ) ) ) |
| 43 | 40 42 | anbi12d | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( ( A gcd B ) || A /\ ( A gcd B ) || B ) <-> ( ( ( A gcd B ) ^ 2 ) || ( A ^ 2 ) /\ ( ( A gcd B ) ^ 2 ) || ( B ^ 2 ) ) ) ) |
| 44 | 8 43 | mpbid | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( ( A gcd B ) ^ 2 ) || ( A ^ 2 ) /\ ( ( A gcd B ) ^ 2 ) || ( B ^ 2 ) ) ) |
| 45 | 2 | nnsqcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A gcd B ) ^ 2 ) e. NN ) |
| 46 | 45 | nnzd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A gcd B ) ^ 2 ) e. ZZ ) |
| 47 | nnsqcl | |- ( A e. NN -> ( A ^ 2 ) e. NN ) |
|
| 48 | 47 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A ^ 2 ) e. NN ) |
| 49 | 48 | nnzd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A ^ 2 ) e. ZZ ) |
| 50 | nnsqcl | |- ( B e. NN -> ( B ^ 2 ) e. NN ) |
|
| 51 | 50 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B ^ 2 ) e. NN ) |
| 52 | 51 | nnzd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B ^ 2 ) e. ZZ ) |
| 53 | dvds2add | |- ( ( ( ( A gcd B ) ^ 2 ) e. ZZ /\ ( A ^ 2 ) e. ZZ /\ ( B ^ 2 ) e. ZZ ) -> ( ( ( ( A gcd B ) ^ 2 ) || ( A ^ 2 ) /\ ( ( A gcd B ) ^ 2 ) || ( B ^ 2 ) ) -> ( ( A gcd B ) ^ 2 ) || ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |
|
| 54 | 46 49 52 53 | syl3anc | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( ( ( A gcd B ) ^ 2 ) || ( A ^ 2 ) /\ ( ( A gcd B ) ^ 2 ) || ( B ^ 2 ) ) -> ( ( A gcd B ) ^ 2 ) || ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |
| 55 | 44 54 | mpd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A gcd B ) ^ 2 ) || ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 56 | 55 | adantr | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( A gcd B ) ^ 2 ) || ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 57 | simpr | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) |
|
| 58 | 56 57 | breqtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( A gcd B ) ^ 2 ) || ( C ^ 2 ) ) |
| 59 | nnz | |- ( C e. NN -> C e. ZZ ) |
|
| 60 | 59 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. ZZ ) |
| 61 | dvdssq | |- ( ( ( A gcd B ) e. ZZ /\ C e. ZZ ) -> ( ( A gcd B ) || C <-> ( ( A gcd B ) ^ 2 ) || ( C ^ 2 ) ) ) |
|
| 62 | 10 60 61 | syl2anc | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A gcd B ) || C <-> ( ( A gcd B ) ^ 2 ) || ( C ^ 2 ) ) ) |
| 63 | 62 | adantr | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( A gcd B ) || C <-> ( ( A gcd B ) ^ 2 ) || ( C ^ 2 ) ) ) |
| 64 | 58 63 | mpbird | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( A gcd B ) || C ) |
| 65 | dvdsval2 | |- ( ( ( A gcd B ) e. ZZ /\ ( A gcd B ) =/= 0 /\ C e. ZZ ) -> ( ( A gcd B ) || C <-> ( C / ( A gcd B ) ) e. ZZ ) ) |
|
| 66 | 10 11 60 65 | syl3anc | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A gcd B ) || C <-> ( C / ( A gcd B ) ) e. ZZ ) ) |
| 67 | 66 | adantr | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( A gcd B ) || C <-> ( C / ( A gcd B ) ) e. ZZ ) ) |
| 68 | 64 67 | mpbid | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( C / ( A gcd B ) ) e. ZZ ) |
| 69 | nnre | |- ( C e. NN -> C e. RR ) |
|
| 70 | 69 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. RR ) |
| 71 | nngt0 | |- ( C e. NN -> 0 < C ) |
|
| 72 | 71 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 < C ) |
| 73 | 70 18 72 21 | divgt0d | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 < ( C / ( A gcd B ) ) ) |
| 74 | 73 | adantr | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> 0 < ( C / ( A gcd B ) ) ) |
| 75 | elnnz | |- ( ( C / ( A gcd B ) ) e. NN <-> ( ( C / ( A gcd B ) ) e. ZZ /\ 0 < ( C / ( A gcd B ) ) ) ) |
|
| 76 | 68 74 75 | sylanbrc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( C / ( A gcd B ) ) e. NN ) |
| 77 | 76 | 3adant3 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> ( C / ( A gcd B ) ) e. NN ) |
| 78 | 48 | nncnd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A ^ 2 ) e. CC ) |
| 79 | 51 | nncnd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B ^ 2 ) e. CC ) |
| 80 | 45 | nncnd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A gcd B ) ^ 2 ) e. CC ) |
| 81 | 45 | nnne0d | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A gcd B ) ^ 2 ) =/= 0 ) |
| 82 | 78 79 80 81 | divdird | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) / ( ( A gcd B ) ^ 2 ) ) = ( ( ( A ^ 2 ) / ( ( A gcd B ) ^ 2 ) ) + ( ( B ^ 2 ) / ( ( A gcd B ) ^ 2 ) ) ) ) |
| 83 | 82 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) / ( ( A gcd B ) ^ 2 ) ) = ( ( ( A ^ 2 ) / ( ( A gcd B ) ^ 2 ) ) + ( ( B ^ 2 ) / ( ( A gcd B ) ^ 2 ) ) ) ) |
| 84 | nncn | |- ( C e. NN -> C e. CC ) |
|
| 85 | 84 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. CC ) |
| 86 | 2 | nncnd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A gcd B ) e. CC ) |
| 87 | 85 86 11 | sqdivd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( C / ( A gcd B ) ) ^ 2 ) = ( ( C ^ 2 ) / ( ( A gcd B ) ^ 2 ) ) ) |
| 88 | 87 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> ( ( C / ( A gcd B ) ) ^ 2 ) = ( ( C ^ 2 ) / ( ( A gcd B ) ^ 2 ) ) ) |
| 89 | oveq1 | |- ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) / ( ( A gcd B ) ^ 2 ) ) = ( ( C ^ 2 ) / ( ( A gcd B ) ^ 2 ) ) ) |
|
| 90 | 89 | 3ad2ant2 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) / ( ( A gcd B ) ^ 2 ) ) = ( ( C ^ 2 ) / ( ( A gcd B ) ^ 2 ) ) ) |
| 91 | 88 90 | eqtr4d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> ( ( C / ( A gcd B ) ) ^ 2 ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) / ( ( A gcd B ) ^ 2 ) ) ) |
| 92 | nncn | |- ( A e. NN -> A e. CC ) |
|
| 93 | 92 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. CC ) |
| 94 | 93 86 11 | sqdivd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A / ( A gcd B ) ) ^ 2 ) = ( ( A ^ 2 ) / ( ( A gcd B ) ^ 2 ) ) ) |
| 95 | nncn | |- ( B e. NN -> B e. CC ) |
|
| 96 | 95 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. CC ) |
| 97 | 96 86 11 | sqdivd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( B / ( A gcd B ) ) ^ 2 ) = ( ( B ^ 2 ) / ( ( A gcd B ) ^ 2 ) ) ) |
| 98 | 94 97 | oveq12d | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( ( A / ( A gcd B ) ) ^ 2 ) + ( ( B / ( A gcd B ) ) ^ 2 ) ) = ( ( ( A ^ 2 ) / ( ( A gcd B ) ^ 2 ) ) + ( ( B ^ 2 ) / ( ( A gcd B ) ^ 2 ) ) ) ) |
| 99 | 98 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> ( ( ( A / ( A gcd B ) ) ^ 2 ) + ( ( B / ( A gcd B ) ) ^ 2 ) ) = ( ( ( A ^ 2 ) / ( ( A gcd B ) ^ 2 ) ) + ( ( B ^ 2 ) / ( ( A gcd B ) ^ 2 ) ) ) ) |
| 100 | 83 91 99 | 3eqtr4rd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> ( ( ( A / ( A gcd B ) ) ^ 2 ) + ( ( B / ( A gcd B ) ) ^ 2 ) ) = ( ( C / ( A gcd B ) ) ^ 2 ) ) |
| 101 | gcddiv | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( A gcd B ) e. NN ) /\ ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) -> ( ( A gcd B ) / ( A gcd B ) ) = ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) ) |
|
| 102 | 12 27 2 8 101 | syl31anc | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A gcd B ) / ( A gcd B ) ) = ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) ) |
| 103 | 86 11 | dividd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A gcd B ) / ( A gcd B ) ) = 1 ) |
| 104 | 102 103 | eqtr3d | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) |
| 105 | 104 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) |
| 106 | simp3 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> -. 2 || ( A / ( A gcd B ) ) ) |
|
| 107 | pythagtriplem18 | |- ( ( ( ( A / ( A gcd B ) ) e. NN /\ ( B / ( A gcd B ) ) e. NN /\ ( C / ( A gcd B ) ) e. NN ) /\ ( ( ( A / ( A gcd B ) ) ^ 2 ) + ( ( B / ( A gcd B ) ) ^ 2 ) ) = ( ( C / ( A gcd B ) ) ^ 2 ) /\ ( ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 /\ -. 2 || ( A / ( A gcd B ) ) ) ) -> E. n e. NN E. m e. NN ( ( A / ( A gcd B ) ) = ( ( m ^ 2 ) - ( n ^ 2 ) ) /\ ( B / ( A gcd B ) ) = ( 2 x. ( m x. n ) ) /\ ( C / ( A gcd B ) ) = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) |
|
| 108 | 25 38 77 100 105 106 107 | syl312anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> E. n e. NN E. m e. NN ( ( A / ( A gcd B ) ) = ( ( m ^ 2 ) - ( n ^ 2 ) ) /\ ( B / ( A gcd B ) ) = ( 2 x. ( m x. n ) ) /\ ( C / ( A gcd B ) ) = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) |
| 109 | 93 86 11 | divcan2d | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A gcd B ) x. ( A / ( A gcd B ) ) ) = A ) |
| 110 | 109 | eqcomd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A = ( ( A gcd B ) x. ( A / ( A gcd B ) ) ) ) |
| 111 | 96 86 11 | divcan2d | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A gcd B ) x. ( B / ( A gcd B ) ) ) = B ) |
| 112 | 111 | eqcomd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B = ( ( A gcd B ) x. ( B / ( A gcd B ) ) ) ) |
| 113 | 85 86 11 | divcan2d | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( A gcd B ) x. ( C / ( A gcd B ) ) ) = C ) |
| 114 | 113 | eqcomd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C = ( ( A gcd B ) x. ( C / ( A gcd B ) ) ) ) |
| 115 | 110 112 114 | 3jca | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A = ( ( A gcd B ) x. ( A / ( A gcd B ) ) ) /\ B = ( ( A gcd B ) x. ( B / ( A gcd B ) ) ) /\ C = ( ( A gcd B ) x. ( C / ( A gcd B ) ) ) ) ) |
| 116 | 115 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> ( A = ( ( A gcd B ) x. ( A / ( A gcd B ) ) ) /\ B = ( ( A gcd B ) x. ( B / ( A gcd B ) ) ) /\ C = ( ( A gcd B ) x. ( C / ( A gcd B ) ) ) ) ) |
| 117 | oveq2 | |- ( ( A / ( A gcd B ) ) = ( ( m ^ 2 ) - ( n ^ 2 ) ) -> ( ( A gcd B ) x. ( A / ( A gcd B ) ) ) = ( ( A gcd B ) x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) |
|
| 118 | 117 | eqeq2d | |- ( ( A / ( A gcd B ) ) = ( ( m ^ 2 ) - ( n ^ 2 ) ) -> ( A = ( ( A gcd B ) x. ( A / ( A gcd B ) ) ) <-> A = ( ( A gcd B ) x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) |
| 119 | 118 | 3ad2ant1 | |- ( ( ( A / ( A gcd B ) ) = ( ( m ^ 2 ) - ( n ^ 2 ) ) /\ ( B / ( A gcd B ) ) = ( 2 x. ( m x. n ) ) /\ ( C / ( A gcd B ) ) = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) -> ( A = ( ( A gcd B ) x. ( A / ( A gcd B ) ) ) <-> A = ( ( A gcd B ) x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) |
| 120 | oveq2 | |- ( ( B / ( A gcd B ) ) = ( 2 x. ( m x. n ) ) -> ( ( A gcd B ) x. ( B / ( A gcd B ) ) ) = ( ( A gcd B ) x. ( 2 x. ( m x. n ) ) ) ) |
|
| 121 | 120 | eqeq2d | |- ( ( B / ( A gcd B ) ) = ( 2 x. ( m x. n ) ) -> ( B = ( ( A gcd B ) x. ( B / ( A gcd B ) ) ) <-> B = ( ( A gcd B ) x. ( 2 x. ( m x. n ) ) ) ) ) |
| 122 | 121 | 3ad2ant2 | |- ( ( ( A / ( A gcd B ) ) = ( ( m ^ 2 ) - ( n ^ 2 ) ) /\ ( B / ( A gcd B ) ) = ( 2 x. ( m x. n ) ) /\ ( C / ( A gcd B ) ) = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) -> ( B = ( ( A gcd B ) x. ( B / ( A gcd B ) ) ) <-> B = ( ( A gcd B ) x. ( 2 x. ( m x. n ) ) ) ) ) |
| 123 | oveq2 | |- ( ( C / ( A gcd B ) ) = ( ( m ^ 2 ) + ( n ^ 2 ) ) -> ( ( A gcd B ) x. ( C / ( A gcd B ) ) ) = ( ( A gcd B ) x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) |
|
| 124 | 123 | eqeq2d | |- ( ( C / ( A gcd B ) ) = ( ( m ^ 2 ) + ( n ^ 2 ) ) -> ( C = ( ( A gcd B ) x. ( C / ( A gcd B ) ) ) <-> C = ( ( A gcd B ) x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
| 125 | 124 | 3ad2ant3 | |- ( ( ( A / ( A gcd B ) ) = ( ( m ^ 2 ) - ( n ^ 2 ) ) /\ ( B / ( A gcd B ) ) = ( 2 x. ( m x. n ) ) /\ ( C / ( A gcd B ) ) = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) -> ( C = ( ( A gcd B ) x. ( C / ( A gcd B ) ) ) <-> C = ( ( A gcd B ) x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
| 126 | 119 122 125 | 3anbi123d | |- ( ( ( A / ( A gcd B ) ) = ( ( m ^ 2 ) - ( n ^ 2 ) ) /\ ( B / ( A gcd B ) ) = ( 2 x. ( m x. n ) ) /\ ( C / ( A gcd B ) ) = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) -> ( ( A = ( ( A gcd B ) x. ( A / ( A gcd B ) ) ) /\ B = ( ( A gcd B ) x. ( B / ( A gcd B ) ) ) /\ C = ( ( A gcd B ) x. ( C / ( A gcd B ) ) ) ) <-> ( A = ( ( A gcd B ) x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( ( A gcd B ) x. ( 2 x. ( m x. n ) ) ) /\ C = ( ( A gcd B ) x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 127 | 116 126 | syl5ibcom | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> ( ( ( A / ( A gcd B ) ) = ( ( m ^ 2 ) - ( n ^ 2 ) ) /\ ( B / ( A gcd B ) ) = ( 2 x. ( m x. n ) ) /\ ( C / ( A gcd B ) ) = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) -> ( A = ( ( A gcd B ) x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( ( A gcd B ) x. ( 2 x. ( m x. n ) ) ) /\ C = ( ( A gcd B ) x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 128 | 127 | reximdv | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> ( E. m e. NN ( ( A / ( A gcd B ) ) = ( ( m ^ 2 ) - ( n ^ 2 ) ) /\ ( B / ( A gcd B ) ) = ( 2 x. ( m x. n ) ) /\ ( C / ( A gcd B ) ) = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) -> E. m e. NN ( A = ( ( A gcd B ) x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( ( A gcd B ) x. ( 2 x. ( m x. n ) ) ) /\ C = ( ( A gcd B ) x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 129 | 128 | reximdv | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> ( E. n e. NN E. m e. NN ( ( A / ( A gcd B ) ) = ( ( m ^ 2 ) - ( n ^ 2 ) ) /\ ( B / ( A gcd B ) ) = ( 2 x. ( m x. n ) ) /\ ( C / ( A gcd B ) ) = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) -> E. n e. NN E. m e. NN ( A = ( ( A gcd B ) x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( ( A gcd B ) x. ( 2 x. ( m x. n ) ) ) /\ C = ( ( A gcd B ) x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 130 | 108 129 | mpd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> E. n e. NN E. m e. NN ( A = ( ( A gcd B ) x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( ( A gcd B ) x. ( 2 x. ( m x. n ) ) ) /\ C = ( ( A gcd B ) x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
| 131 | oveq1 | |- ( k = ( A gcd B ) -> ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) = ( ( A gcd B ) x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) |
|
| 132 | 131 | eqeq2d | |- ( k = ( A gcd B ) -> ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) <-> A = ( ( A gcd B ) x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ) ) |
| 133 | oveq1 | |- ( k = ( A gcd B ) -> ( k x. ( 2 x. ( m x. n ) ) ) = ( ( A gcd B ) x. ( 2 x. ( m x. n ) ) ) ) |
|
| 134 | 133 | eqeq2d | |- ( k = ( A gcd B ) -> ( B = ( k x. ( 2 x. ( m x. n ) ) ) <-> B = ( ( A gcd B ) x. ( 2 x. ( m x. n ) ) ) ) ) |
| 135 | oveq1 | |- ( k = ( A gcd B ) -> ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) = ( ( A gcd B ) x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) |
|
| 136 | 135 | eqeq2d | |- ( k = ( A gcd B ) -> ( C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) <-> C = ( ( A gcd B ) x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
| 137 | 132 134 136 | 3anbi123d | |- ( k = ( A gcd B ) -> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> ( A = ( ( A gcd B ) x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( ( A gcd B ) x. ( 2 x. ( m x. n ) ) ) /\ C = ( ( A gcd B ) x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 138 | 137 | 2rexbidv | |- ( k = ( A gcd B ) -> ( E. n e. NN E. m e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> E. n e. NN E. m e. NN ( A = ( ( A gcd B ) x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( ( A gcd B ) x. ( 2 x. ( m x. n ) ) ) /\ C = ( ( A gcd B ) x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) ) |
| 139 | 138 | rspcev | |- ( ( ( A gcd B ) e. NN /\ E. n e. NN E. m e. NN ( A = ( ( A gcd B ) x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( ( A gcd B ) x. ( 2 x. ( m x. n ) ) ) /\ C = ( ( A gcd B ) x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) -> E. k e. NN E. n e. NN E. m e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
| 140 | 3 130 139 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> E. k e. NN E. n e. NN E. m e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
| 141 | rexcom | |- ( E. k e. NN E. n e. NN E. m e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> E. n e. NN E. k e. NN E. m e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
|
| 142 | rexcom | |- ( E. k e. NN E. m e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
|
| 143 | 142 | rexbii | |- ( E. n e. NN E. k e. NN E. m e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
| 144 | 141 143 | bitri | |- ( E. k e. NN E. n e. NN E. m e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) <-> E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |
| 145 | 140 144 | sylib | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ -. 2 || ( A / ( A gcd B ) ) ) -> E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) ) |