This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topological product of finitely many compact spaces is compact. This weak version of Tychonoff's theorem does not require the axiom of choice. (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ptcmpfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ 𝐹 ) ∈ Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ Comp → 𝐹 Fn 𝐴 ) | |
| 2 | fnresdm | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ Comp → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 5 | 4 | fveq2d | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) = ( ∏t ‘ 𝐹 ) ) |
| 6 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 7 | sseq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) | |
| 8 | reseq2 | ⊢ ( 𝑥 = ∅ → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ ∅ ) ) | |
| 9 | res0 | ⊢ ( 𝐹 ↾ ∅ ) = ∅ | |
| 10 | 8 9 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( 𝐹 ↾ 𝑥 ) = ∅ ) |
| 11 | 10 | fveq2d | ⊢ ( 𝑥 = ∅ → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) = ( ∏t ‘ ∅ ) ) |
| 12 | 11 | eleq1d | ⊢ ( 𝑥 = ∅ → ( ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ↔ ( ∏t ‘ ∅ ) ∈ Comp ) ) |
| 13 | 12 | imbi2d | ⊢ ( 𝑥 = ∅ → ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ) ↔ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ∅ ) ∈ Comp ) ) ) |
| 14 | 7 13 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ) ) ↔ ( ∅ ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ∅ ) ∈ Comp ) ) ) ) |
| 15 | sseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) | |
| 16 | reseq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ 𝑦 ) ) | |
| 17 | 16 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) = ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ) |
| 18 | 17 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ↔ ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) ) |
| 19 | 18 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ) ↔ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) ) ) |
| 20 | 15 19 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ) ) ↔ ( 𝑦 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) ) ) ) |
| 21 | sseq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ⊆ 𝐴 ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) | |
| 22 | reseq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 23 | 22 | fveq2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) = ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 24 | 23 | eleq1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ↔ ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) |
| 25 | 24 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ) ↔ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) |
| 26 | 21 25 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ) ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) ) |
| 27 | sseq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) | |
| 28 | reseq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ 𝐴 ) ) | |
| 29 | 28 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) = ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) ) |
| 30 | 29 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ↔ ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ Comp ) ) |
| 31 | 30 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ) ↔ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ Comp ) ) ) |
| 32 | 27 31 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ) ) ↔ ( 𝐴 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ Comp ) ) ) ) |
| 33 | 0ex | ⊢ ∅ ∈ V | |
| 34 | f0 | ⊢ ∅ : ∅ ⟶ Top | |
| 35 | pttop | ⊢ ( ( ∅ ∈ V ∧ ∅ : ∅ ⟶ Top ) → ( ∏t ‘ ∅ ) ∈ Top ) | |
| 36 | 33 34 35 | mp2an | ⊢ ( ∏t ‘ ∅ ) ∈ Top |
| 37 | eqid | ⊢ ( ∏t ‘ ∅ ) = ( ∏t ‘ ∅ ) | |
| 38 | 37 | ptuni | ⊢ ( ( ∅ ∈ V ∧ ∅ : ∅ ⟶ Top ) → X 𝑥 ∈ ∅ ∪ ( ∅ ‘ 𝑥 ) = ∪ ( ∏t ‘ ∅ ) ) |
| 39 | 33 34 38 | mp2an | ⊢ X 𝑥 ∈ ∅ ∪ ( ∅ ‘ 𝑥 ) = ∪ ( ∏t ‘ ∅ ) |
| 40 | ixp0x | ⊢ X 𝑥 ∈ ∅ ∪ ( ∅ ‘ 𝑥 ) = { ∅ } | |
| 41 | snfi | ⊢ { ∅ } ∈ Fin | |
| 42 | 40 41 | eqeltri | ⊢ X 𝑥 ∈ ∅ ∪ ( ∅ ‘ 𝑥 ) ∈ Fin |
| 43 | 39 42 | eqeltrri | ⊢ ∪ ( ∏t ‘ ∅ ) ∈ Fin |
| 44 | pwfi | ⊢ ( ∪ ( ∏t ‘ ∅ ) ∈ Fin ↔ 𝒫 ∪ ( ∏t ‘ ∅ ) ∈ Fin ) | |
| 45 | 43 44 | mpbi | ⊢ 𝒫 ∪ ( ∏t ‘ ∅ ) ∈ Fin |
| 46 | pwuni | ⊢ ( ∏t ‘ ∅ ) ⊆ 𝒫 ∪ ( ∏t ‘ ∅ ) | |
| 47 | ssfi | ⊢ ( ( 𝒫 ∪ ( ∏t ‘ ∅ ) ∈ Fin ∧ ( ∏t ‘ ∅ ) ⊆ 𝒫 ∪ ( ∏t ‘ ∅ ) ) → ( ∏t ‘ ∅ ) ∈ Fin ) | |
| 48 | 45 46 47 | mp2an | ⊢ ( ∏t ‘ ∅ ) ∈ Fin |
| 49 | 36 48 | elini | ⊢ ( ∏t ‘ ∅ ) ∈ ( Top ∩ Fin ) |
| 50 | fincmp | ⊢ ( ( ∏t ‘ ∅ ) ∈ ( Top ∩ Fin ) → ( ∏t ‘ ∅ ) ∈ Comp ) | |
| 51 | 49 50 | ax-mp | ⊢ ( ∏t ‘ ∅ ) ∈ Comp |
| 52 | 51 | 2a1i | ⊢ ( ∅ ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ∅ ) ∈ Comp ) ) |
| 53 | ssun1 | ⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 54 | id | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) | |
| 55 | 53 54 | sstrid | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → 𝑦 ⊆ 𝐴 ) |
| 56 | 55 | imim1i | ⊢ ( ( 𝑦 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) ) ) |
| 57 | eqid | ⊢ ∪ ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) = ∪ ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) | |
| 58 | eqid | ⊢ ∪ ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) = ∪ ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) | |
| 59 | eqid | ⊢ ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 60 | resabs1 | ⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ 𝑦 ) = ( 𝐹 ↾ 𝑦 ) ) | |
| 61 | 53 60 | ax-mp | ⊢ ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ 𝑦 ) = ( 𝐹 ↾ 𝑦 ) |
| 62 | 61 | eqcomi | ⊢ ( 𝐹 ↾ 𝑦 ) = ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ 𝑦 ) |
| 63 | 62 | fveq2i | ⊢ ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) = ( ∏t ‘ ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ 𝑦 ) ) |
| 64 | ssun2 | ⊢ { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 65 | resabs1 | ⊢ ( { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ { 𝑧 } ) = ( 𝐹 ↾ { 𝑧 } ) ) | |
| 66 | 64 65 | ax-mp | ⊢ ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ { 𝑧 } ) = ( 𝐹 ↾ { 𝑧 } ) |
| 67 | 66 | eqcomi | ⊢ ( 𝐹 ↾ { 𝑧 } ) = ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ { 𝑧 } ) |
| 68 | 67 | fveq2i | ⊢ ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) = ( ∏t ‘ ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ { 𝑧 } ) ) |
| 69 | eqid | ⊢ ( 𝑢 ∈ ∪ ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) , 𝑣 ∈ ∪ ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ↦ ( 𝑢 ∪ 𝑣 ) ) = ( 𝑢 ∈ ∪ ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) , 𝑣 ∈ ∪ ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ↦ ( 𝑢 ∪ 𝑣 ) ) | |
| 70 | vex | ⊢ 𝑦 ∈ V | |
| 71 | vsnex | ⊢ { 𝑧 } ∈ V | |
| 72 | 70 71 | unex | ⊢ ( 𝑦 ∪ { 𝑧 } ) ∈ V |
| 73 | 72 | a1i | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ V ) |
| 74 | simplr | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ Comp ) | |
| 75 | cmptop | ⊢ ( 𝑥 ∈ Comp → 𝑥 ∈ Top ) | |
| 76 | 75 | ssriv | ⊢ Comp ⊆ Top |
| 77 | fss | ⊢ ( ( 𝐹 : 𝐴 ⟶ Comp ∧ Comp ⊆ Top ) → 𝐹 : 𝐴 ⟶ Top ) | |
| 78 | 74 76 77 | sylancl | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ Top ) |
| 79 | simprr | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) | |
| 80 | 78 79 | fssresd | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) : ( 𝑦 ∪ { 𝑧 } ) ⟶ Top ) |
| 81 | eqidd | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) ) | |
| 82 | simprl | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 83 | disjsn | ⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) | |
| 84 | 82 83 | sylibr | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
| 85 | 57 58 59 63 68 69 73 80 81 84 | ptunhmeo | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑢 ∈ ∪ ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) , 𝑣 ∈ ∪ ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ↦ ( 𝑢 ∪ 𝑣 ) ) ∈ ( ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) Homeo ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) |
| 86 | hmphi | ⊢ ( ( 𝑢 ∈ ∪ ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) , 𝑣 ∈ ∪ ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ↦ ( 𝑢 ∪ 𝑣 ) ) ∈ ( ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) Homeo ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) → ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ≃ ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) | |
| 87 | 85 86 | syl | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ≃ ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 88 | 1 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝐹 Fn 𝐴 ) |
| 89 | 64 79 | sstrid | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → { 𝑧 } ⊆ 𝐴 ) |
| 90 | vex | ⊢ 𝑧 ∈ V | |
| 91 | 90 | snss | ⊢ ( 𝑧 ∈ 𝐴 ↔ { 𝑧 } ⊆ 𝐴 ) |
| 92 | 89 91 | sylibr | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝑧 ∈ 𝐴 ) |
| 93 | fnressn | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ↾ { 𝑧 } ) = { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) | |
| 94 | 88 92 93 | syl2anc | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝐹 ↾ { 𝑧 } ) = { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) |
| 95 | 94 | fveq2d | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) = ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) ) |
| 96 | eqid | ⊢ ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) = ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) | |
| 97 | 90 | a1i | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝑧 ∈ V ) |
| 98 | 74 92 | ffvelcdmd | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ Comp ) |
| 99 | 76 98 | sselid | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ Top ) |
| 100 | toptopon2 | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ Top ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 101 | 99 100 | sylib | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑧 ) ) ) |
| 102 | 96 97 101 | pt1hmeo | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑥 ∈ ∪ ( 𝐹 ‘ 𝑧 ) ↦ { 〈 𝑧 , 𝑥 〉 } ) ∈ ( ( 𝐹 ‘ 𝑧 ) Homeo ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) ) ) |
| 103 | hmphi | ⊢ ( ( 𝑥 ∈ ∪ ( 𝐹 ‘ 𝑧 ) ↦ { 〈 𝑧 , 𝑥 〉 } ) ∈ ( ( 𝐹 ‘ 𝑧 ) Homeo ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) ) → ( 𝐹 ‘ 𝑧 ) ≃ ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) ) | |
| 104 | 102 103 | syl | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ≃ ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) ) |
| 105 | cmphmph | ⊢ ( ( 𝐹 ‘ 𝑧 ) ≃ ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) → ( ( 𝐹 ‘ 𝑧 ) ∈ Comp → ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) ∈ Comp ) ) | |
| 106 | 104 98 105 | sylc | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) ∈ Comp ) |
| 107 | 95 106 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ∈ Comp ) |
| 108 | txcmp | ⊢ ( ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ∧ ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ∈ Comp ) → ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ∈ Comp ) | |
| 109 | 108 | expcom | ⊢ ( ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ∈ Comp → ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp → ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ∈ Comp ) ) |
| 110 | 107 109 | syl | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp → ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ∈ Comp ) ) |
| 111 | cmphmph | ⊢ ( ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ≃ ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) → ( ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ∈ Comp → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) | |
| 112 | 87 110 111 | sylsyld | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) |
| 113 | 112 | expcom | ⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) |
| 114 | 113 | a2d | ⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) |
| 115 | 114 | ex | ⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) ) |
| 116 | 115 | a2d | ⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) ) |
| 117 | 56 116 | syl5 | ⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝑦 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) ) |
| 118 | 117 | adantl | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) ) |
| 119 | 14 20 26 32 52 118 | findcard2s | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ Comp ) ) ) |
| 120 | 6 119 | mpi | ⊢ ( 𝐴 ∈ Fin → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ Comp ) ) |
| 121 | 120 | anabsi5 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ Comp ) |
| 122 | 5 121 | eqeltrrd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ 𝐹 ) ∈ Comp ) |