This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The canonical homeomorphism from a topological product on a singleton to the topology of the factor. (Contributed by Mario Carneiro, 3-Feb-2015) (Proof shortened by AV, 18-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pt1hmeo.j | ⊢ 𝐾 = ( ∏t ‘ { 〈 𝐴 , 𝐽 〉 } ) | |
| pt1hmeo.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| pt1hmeo.r | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| Assertion | pt1hmeo | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ { 〈 𝐴 , 𝑥 〉 } ) ∈ ( 𝐽 Homeo 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pt1hmeo.j | ⊢ 𝐾 = ( ∏t ‘ { 〈 𝐴 , 𝐽 〉 } ) | |
| 2 | pt1hmeo.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | pt1hmeo.r | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 4 | fconstmpt | ⊢ ( { 𝐴 } × { 𝑥 } ) = ( 𝑘 ∈ { 𝐴 } ↦ 𝑥 ) | |
| 5 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑉 ) |
| 6 | sneq | ⊢ ( 𝑘 = 𝐴 → { 𝑘 } = { 𝐴 } ) | |
| 7 | 6 | xpeq1d | ⊢ ( 𝑘 = 𝐴 → ( { 𝑘 } × { 𝑥 } ) = ( { 𝐴 } × { 𝑥 } ) ) |
| 8 | opeq1 | ⊢ ( 𝑘 = 𝐴 → 〈 𝑘 , 𝑥 〉 = 〈 𝐴 , 𝑥 〉 ) | |
| 9 | 8 | sneqd | ⊢ ( 𝑘 = 𝐴 → { 〈 𝑘 , 𝑥 〉 } = { 〈 𝐴 , 𝑥 〉 } ) |
| 10 | 7 9 | eqeq12d | ⊢ ( 𝑘 = 𝐴 → ( ( { 𝑘 } × { 𝑥 } ) = { 〈 𝑘 , 𝑥 〉 } ↔ ( { 𝐴 } × { 𝑥 } ) = { 〈 𝐴 , 𝑥 〉 } ) ) |
| 11 | vex | ⊢ 𝑘 ∈ V | |
| 12 | vex | ⊢ 𝑥 ∈ V | |
| 13 | 11 12 | xpsn | ⊢ ( { 𝑘 } × { 𝑥 } ) = { 〈 𝑘 , 𝑥 〉 } |
| 14 | 10 13 | vtoclg | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } × { 𝑥 } ) = { 〈 𝐴 , 𝑥 〉 } ) |
| 15 | 5 14 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( { 𝐴 } × { 𝑥 } ) = { 〈 𝐴 , 𝑥 〉 } ) |
| 16 | 4 15 | eqtr3id | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ { 𝐴 } ↦ 𝑥 ) = { 〈 𝐴 , 𝑥 〉 } ) |
| 17 | 16 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ { 𝐴 } ↦ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ { 〈 𝐴 , 𝑥 〉 } ) ) |
| 18 | snex | ⊢ { 𝐴 } ∈ V | |
| 19 | 18 | a1i | ⊢ ( 𝜑 → { 𝐴 } ∈ V ) |
| 20 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 21 | 3 20 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 22 | 2 21 | fsnd | ⊢ ( 𝜑 → { 〈 𝐴 , 𝐽 〉 } : { 𝐴 } ⟶ Top ) |
| 23 | 3 | cnmptid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝑥 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐴 } ) → ( 𝑥 ∈ 𝑋 ↦ 𝑥 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 25 | elsni | ⊢ ( 𝑘 ∈ { 𝐴 } → 𝑘 = 𝐴 ) | |
| 26 | 25 | fveq2d | ⊢ ( 𝑘 ∈ { 𝐴 } → ( { 〈 𝐴 , 𝐽 〉 } ‘ 𝑘 ) = ( { 〈 𝐴 , 𝐽 〉 } ‘ 𝐴 ) ) |
| 27 | fvsng | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( { 〈 𝐴 , 𝐽 〉 } ‘ 𝐴 ) = 𝐽 ) | |
| 28 | 2 3 27 | syl2anc | ⊢ ( 𝜑 → ( { 〈 𝐴 , 𝐽 〉 } ‘ 𝐴 ) = 𝐽 ) |
| 29 | 26 28 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐴 } ) → ( { 〈 𝐴 , 𝐽 〉 } ‘ 𝑘 ) = 𝐽 ) |
| 30 | 29 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐴 } ) → ( 𝐽 Cn ( { 〈 𝐴 , 𝐽 〉 } ‘ 𝑘 ) ) = ( 𝐽 Cn 𝐽 ) ) |
| 31 | 24 30 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐴 } ) → ( 𝑥 ∈ 𝑋 ↦ 𝑥 ) ∈ ( 𝐽 Cn ( { 〈 𝐴 , 𝐽 〉 } ‘ 𝑘 ) ) ) |
| 32 | 1 3 19 22 31 | ptcn | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ { 𝐴 } ↦ 𝑥 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 33 | 17 32 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ { 〈 𝐴 , 𝑥 〉 } ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 34 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , 𝑥 〉 } ) ) → 𝑦 = { 〈 𝐴 , 𝑥 〉 } ) | |
| 35 | 16 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , 𝑥 〉 } ) ) → ( 𝑘 ∈ { 𝐴 } ↦ 𝑥 ) = { 〈 𝐴 , 𝑥 〉 } ) |
| 36 | 34 35 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , 𝑥 〉 } ) ) → 𝑦 = ( 𝑘 ∈ { 𝐴 } ↦ 𝑥 ) ) |
| 37 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , 𝑥 〉 } ) ) → 𝑥 ∈ 𝑋 ) | |
| 38 | 37 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , 𝑥 〉 } ) ) ∧ 𝑘 ∈ { 𝐴 } ) → 𝑥 ∈ 𝑋 ) |
| 39 | 38 | fmpttd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , 𝑥 〉 } ) ) → ( 𝑘 ∈ { 𝐴 } ↦ 𝑥 ) : { 𝐴 } ⟶ 𝑋 ) |
| 40 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 41 | 3 40 | syl | ⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
| 42 | 41 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , 𝑥 〉 } ) ) → 𝑋 ∈ 𝐽 ) |
| 43 | elmapg | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ { 𝐴 } ∈ V ) → ( ( 𝑘 ∈ { 𝐴 } ↦ 𝑥 ) ∈ ( 𝑋 ↑m { 𝐴 } ) ↔ ( 𝑘 ∈ { 𝐴 } ↦ 𝑥 ) : { 𝐴 } ⟶ 𝑋 ) ) | |
| 44 | 42 18 43 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , 𝑥 〉 } ) ) → ( ( 𝑘 ∈ { 𝐴 } ↦ 𝑥 ) ∈ ( 𝑋 ↑m { 𝐴 } ) ↔ ( 𝑘 ∈ { 𝐴 } ↦ 𝑥 ) : { 𝐴 } ⟶ 𝑋 ) ) |
| 45 | 39 44 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , 𝑥 〉 } ) ) → ( 𝑘 ∈ { 𝐴 } ↦ 𝑥 ) ∈ ( 𝑋 ↑m { 𝐴 } ) ) |
| 46 | 36 45 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , 𝑥 〉 } ) ) → 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ) |
| 47 | 34 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , 𝑥 〉 } ) ) → ( 𝑦 ‘ 𝐴 ) = ( { 〈 𝐴 , 𝑥 〉 } ‘ 𝐴 ) ) |
| 48 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , 𝑥 〉 } ) ) → 𝐴 ∈ 𝑉 ) |
| 49 | fvsng | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋 ) → ( { 〈 𝐴 , 𝑥 〉 } ‘ 𝐴 ) = 𝑥 ) | |
| 50 | 48 37 49 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , 𝑥 〉 } ) ) → ( { 〈 𝐴 , 𝑥 〉 } ‘ 𝐴 ) = 𝑥 ) |
| 51 | 47 50 | eqtr2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , 𝑥 〉 } ) ) → 𝑥 = ( 𝑦 ‘ 𝐴 ) ) |
| 52 | 46 51 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , 𝑥 〉 } ) ) → ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ∧ 𝑥 = ( 𝑦 ‘ 𝐴 ) ) ) |
| 53 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ∧ 𝑥 = ( 𝑦 ‘ 𝐴 ) ) ) → 𝑥 = ( 𝑦 ‘ 𝐴 ) ) | |
| 54 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ∧ 𝑥 = ( 𝑦 ‘ 𝐴 ) ) ) → 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ) | |
| 55 | 41 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ∧ 𝑥 = ( 𝑦 ‘ 𝐴 ) ) ) → 𝑋 ∈ 𝐽 ) |
| 56 | elmapg | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ { 𝐴 } ∈ V ) → ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ↔ 𝑦 : { 𝐴 } ⟶ 𝑋 ) ) | |
| 57 | 55 18 56 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ∧ 𝑥 = ( 𝑦 ‘ 𝐴 ) ) ) → ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ↔ 𝑦 : { 𝐴 } ⟶ 𝑋 ) ) |
| 58 | 54 57 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ∧ 𝑥 = ( 𝑦 ‘ 𝐴 ) ) ) → 𝑦 : { 𝐴 } ⟶ 𝑋 ) |
| 59 | snidg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 } ) | |
| 60 | 2 59 | syl | ⊢ ( 𝜑 → 𝐴 ∈ { 𝐴 } ) |
| 61 | 60 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ∧ 𝑥 = ( 𝑦 ‘ 𝐴 ) ) ) → 𝐴 ∈ { 𝐴 } ) |
| 62 | 58 61 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ∧ 𝑥 = ( 𝑦 ‘ 𝐴 ) ) ) → ( 𝑦 ‘ 𝐴 ) ∈ 𝑋 ) |
| 63 | 53 62 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ∧ 𝑥 = ( 𝑦 ‘ 𝐴 ) ) ) → 𝑥 ∈ 𝑋 ) |
| 64 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ∧ 𝑥 = ( 𝑦 ‘ 𝐴 ) ) ) → 𝐴 ∈ 𝑉 ) |
| 65 | fsn2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 : { 𝐴 } ⟶ 𝑋 ↔ ( ( 𝑦 ‘ 𝐴 ) ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , ( 𝑦 ‘ 𝐴 ) 〉 } ) ) ) | |
| 66 | 64 65 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ∧ 𝑥 = ( 𝑦 ‘ 𝐴 ) ) ) → ( 𝑦 : { 𝐴 } ⟶ 𝑋 ↔ ( ( 𝑦 ‘ 𝐴 ) ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , ( 𝑦 ‘ 𝐴 ) 〉 } ) ) ) |
| 67 | 58 66 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ∧ 𝑥 = ( 𝑦 ‘ 𝐴 ) ) ) → ( ( 𝑦 ‘ 𝐴 ) ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , ( 𝑦 ‘ 𝐴 ) 〉 } ) ) |
| 68 | 67 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ∧ 𝑥 = ( 𝑦 ‘ 𝐴 ) ) ) → 𝑦 = { 〈 𝐴 , ( 𝑦 ‘ 𝐴 ) 〉 } ) |
| 69 | 53 | opeq2d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ∧ 𝑥 = ( 𝑦 ‘ 𝐴 ) ) ) → 〈 𝐴 , 𝑥 〉 = 〈 𝐴 , ( 𝑦 ‘ 𝐴 ) 〉 ) |
| 70 | 69 | sneqd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ∧ 𝑥 = ( 𝑦 ‘ 𝐴 ) ) ) → { 〈 𝐴 , 𝑥 〉 } = { 〈 𝐴 , ( 𝑦 ‘ 𝐴 ) 〉 } ) |
| 71 | 68 70 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ∧ 𝑥 = ( 𝑦 ‘ 𝐴 ) ) ) → 𝑦 = { 〈 𝐴 , 𝑥 〉 } ) |
| 72 | 63 71 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ∧ 𝑥 = ( 𝑦 ‘ 𝐴 ) ) ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , 𝑥 〉 } ) ) |
| 73 | 52 72 | impbida | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 = { 〈 𝐴 , 𝑥 〉 } ) ↔ ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ∧ 𝑥 = ( 𝑦 ‘ 𝐴 ) ) ) ) |
| 74 | 73 | mptcnv | ⊢ ( 𝜑 → ◡ ( 𝑥 ∈ 𝑋 ↦ { 〈 𝐴 , 𝑥 〉 } ) = ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ↦ ( 𝑦 ‘ 𝐴 ) ) ) |
| 75 | xpsng | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( { 𝐴 } × { 𝐽 } ) = { 〈 𝐴 , 𝐽 〉 } ) | |
| 76 | 2 3 75 | syl2anc | ⊢ ( 𝜑 → ( { 𝐴 } × { 𝐽 } ) = { 〈 𝐴 , 𝐽 〉 } ) |
| 77 | 76 | eqcomd | ⊢ ( 𝜑 → { 〈 𝐴 , 𝐽 〉 } = ( { 𝐴 } × { 𝐽 } ) ) |
| 78 | 77 | fveq2d | ⊢ ( 𝜑 → ( ∏t ‘ { 〈 𝐴 , 𝐽 〉 } ) = ( ∏t ‘ ( { 𝐴 } × { 𝐽 } ) ) ) |
| 79 | 1 78 | eqtrid | ⊢ ( 𝜑 → 𝐾 = ( ∏t ‘ ( { 𝐴 } × { 𝐽 } ) ) ) |
| 80 | eqid | ⊢ ( ∏t ‘ ( { 𝐴 } × { 𝐽 } ) ) = ( ∏t ‘ ( { 𝐴 } × { 𝐽 } ) ) | |
| 81 | 80 | pttoponconst | ⊢ ( ( { 𝐴 } ∈ V ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( ∏t ‘ ( { 𝐴 } × { 𝐽 } ) ) ∈ ( TopOn ‘ ( 𝑋 ↑m { 𝐴 } ) ) ) |
| 82 | 19 3 81 | syl2anc | ⊢ ( 𝜑 → ( ∏t ‘ ( { 𝐴 } × { 𝐽 } ) ) ∈ ( TopOn ‘ ( 𝑋 ↑m { 𝐴 } ) ) ) |
| 83 | 79 82 | eqeltrd | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ( 𝑋 ↑m { 𝐴 } ) ) ) |
| 84 | toponuni | ⊢ ( 𝐾 ∈ ( TopOn ‘ ( 𝑋 ↑m { 𝐴 } ) ) → ( 𝑋 ↑m { 𝐴 } ) = ∪ 𝐾 ) | |
| 85 | 83 84 | syl | ⊢ ( 𝜑 → ( 𝑋 ↑m { 𝐴 } ) = ∪ 𝐾 ) |
| 86 | 85 | mpteq1d | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 ↑m { 𝐴 } ) ↦ ( 𝑦 ‘ 𝐴 ) ) = ( 𝑦 ∈ ∪ 𝐾 ↦ ( 𝑦 ‘ 𝐴 ) ) ) |
| 87 | 74 86 | eqtrd | ⊢ ( 𝜑 → ◡ ( 𝑥 ∈ 𝑋 ↦ { 〈 𝐴 , 𝑥 〉 } ) = ( 𝑦 ∈ ∪ 𝐾 ↦ ( 𝑦 ‘ 𝐴 ) ) ) |
| 88 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 89 | 88 1 | ptpjcn | ⊢ ( ( { 𝐴 } ∈ V ∧ { 〈 𝐴 , 𝐽 〉 } : { 𝐴 } ⟶ Top ∧ 𝐴 ∈ { 𝐴 } ) → ( 𝑦 ∈ ∪ 𝐾 ↦ ( 𝑦 ‘ 𝐴 ) ) ∈ ( 𝐾 Cn ( { 〈 𝐴 , 𝐽 〉 } ‘ 𝐴 ) ) ) |
| 90 | 18 22 60 89 | mp3an2i | ⊢ ( 𝜑 → ( 𝑦 ∈ ∪ 𝐾 ↦ ( 𝑦 ‘ 𝐴 ) ) ∈ ( 𝐾 Cn ( { 〈 𝐴 , 𝐽 〉 } ‘ 𝐴 ) ) ) |
| 91 | 28 | oveq2d | ⊢ ( 𝜑 → ( 𝐾 Cn ( { 〈 𝐴 , 𝐽 〉 } ‘ 𝐴 ) ) = ( 𝐾 Cn 𝐽 ) ) |
| 92 | 90 91 | eleqtrd | ⊢ ( 𝜑 → ( 𝑦 ∈ ∪ 𝐾 ↦ ( 𝑦 ‘ 𝐴 ) ) ∈ ( 𝐾 Cn 𝐽 ) ) |
| 93 | 87 92 | eqeltrd | ⊢ ( 𝜑 → ◡ ( 𝑥 ∈ 𝑋 ↦ { 〈 𝐴 , 𝑥 〉 } ) ∈ ( 𝐾 Cn 𝐽 ) ) |
| 94 | ishmeo | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ { 〈 𝐴 , 𝑥 〉 } ) ∈ ( 𝐽 Homeo 𝐾 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ { 〈 𝐴 , 𝑥 〉 } ) ∈ ( 𝐽 Cn 𝐾 ) ∧ ◡ ( 𝑥 ∈ 𝑋 ↦ { 〈 𝐴 , 𝑥 〉 } ) ∈ ( 𝐾 Cn 𝐽 ) ) ) | |
| 95 | 33 93 94 | sylanbrc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ { 〈 𝐴 , 𝑥 〉 } ) ∈ ( 𝐽 Homeo 𝐾 ) ) |