This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by Thierry Arnoux, 11-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsn2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 : { 𝐴 } ⟶ 𝐵 ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq | ⊢ ( 𝑎 = 𝐴 → { 𝑎 } = { 𝐴 } ) | |
| 2 | 1 | feq2d | ⊢ ( 𝑎 = 𝐴 → ( 𝐹 : { 𝑎 } ⟶ 𝐵 ↔ 𝐹 : { 𝐴 } ⟶ 𝐵 ) ) |
| 3 | fveq2 | ⊢ ( 𝑎 = 𝐴 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝐹 ‘ 𝑎 ) ∈ 𝐵 ↔ ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 5 | id | ⊢ ( 𝑎 = 𝐴 → 𝑎 = 𝐴 ) | |
| 6 | 5 3 | opeq12d | ⊢ ( 𝑎 = 𝐴 → 〈 𝑎 , ( 𝐹 ‘ 𝑎 ) 〉 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ) |
| 7 | 6 | sneqd | ⊢ ( 𝑎 = 𝐴 → { 〈 𝑎 , ( 𝐹 ‘ 𝑎 ) 〉 } = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) |
| 8 | 7 | eqeq2d | ⊢ ( 𝑎 = 𝐴 → ( 𝐹 = { 〈 𝑎 , ( 𝐹 ‘ 𝑎 ) 〉 } ↔ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) |
| 9 | 4 8 | anbi12d | ⊢ ( 𝑎 = 𝐴 → ( ( ( 𝐹 ‘ 𝑎 ) ∈ 𝐵 ∧ 𝐹 = { 〈 𝑎 , ( 𝐹 ‘ 𝑎 ) 〉 } ) ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) ) |
| 10 | vex | ⊢ 𝑎 ∈ V | |
| 11 | 10 | fsn2 | ⊢ ( 𝐹 : { 𝑎 } ⟶ 𝐵 ↔ ( ( 𝐹 ‘ 𝑎 ) ∈ 𝐵 ∧ 𝐹 = { 〈 𝑎 , ( 𝐹 ‘ 𝑎 ) 〉 } ) ) |
| 12 | 2 9 11 | vtoclbg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 : { 𝐴 } ⟶ 𝐵 ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) ) |