This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mptcnv.1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷 ) ) ) | |
| Assertion | mptcnv | ⊢ ( 𝜑 → ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑦 ∈ 𝐶 ↦ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptcnv.1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷 ) ) ) | |
| 2 | 1 | opabbidv | ⊢ ( 𝜑 → { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷 ) } ) |
| 3 | df-mpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } | |
| 4 | 3 | cnveqi | ⊢ ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ◡ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
| 5 | cnvopab | ⊢ ◡ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } | |
| 6 | 4 5 | eqtri | ⊢ ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
| 7 | df-mpt | ⊢ ( 𝑦 ∈ 𝐶 ↦ 𝐷 ) = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷 ) } | |
| 8 | 2 6 7 | 3eqtr4g | ⊢ ( 𝜑 → ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑦 ∈ 𝐶 ↦ 𝐷 ) ) |