This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The canonical homeomorphism from a topological product on a singleton to the topology of the factor. (Contributed by Mario Carneiro, 3-Feb-2015) (Proof shortened by AV, 18-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pt1hmeo.j | |- K = ( Xt_ ` { <. A , J >. } ) |
|
| pt1hmeo.a | |- ( ph -> A e. V ) |
||
| pt1hmeo.r | |- ( ph -> J e. ( TopOn ` X ) ) |
||
| Assertion | pt1hmeo | |- ( ph -> ( x e. X |-> { <. A , x >. } ) e. ( J Homeo K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pt1hmeo.j | |- K = ( Xt_ ` { <. A , J >. } ) |
|
| 2 | pt1hmeo.a | |- ( ph -> A e. V ) |
|
| 3 | pt1hmeo.r | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 4 | fconstmpt | |- ( { A } X. { x } ) = ( k e. { A } |-> x ) |
|
| 5 | 2 | adantr | |- ( ( ph /\ x e. X ) -> A e. V ) |
| 6 | sneq | |- ( k = A -> { k } = { A } ) |
|
| 7 | 6 | xpeq1d | |- ( k = A -> ( { k } X. { x } ) = ( { A } X. { x } ) ) |
| 8 | opeq1 | |- ( k = A -> <. k , x >. = <. A , x >. ) |
|
| 9 | 8 | sneqd | |- ( k = A -> { <. k , x >. } = { <. A , x >. } ) |
| 10 | 7 9 | eqeq12d | |- ( k = A -> ( ( { k } X. { x } ) = { <. k , x >. } <-> ( { A } X. { x } ) = { <. A , x >. } ) ) |
| 11 | vex | |- k e. _V |
|
| 12 | vex | |- x e. _V |
|
| 13 | 11 12 | xpsn | |- ( { k } X. { x } ) = { <. k , x >. } |
| 14 | 10 13 | vtoclg | |- ( A e. V -> ( { A } X. { x } ) = { <. A , x >. } ) |
| 15 | 5 14 | syl | |- ( ( ph /\ x e. X ) -> ( { A } X. { x } ) = { <. A , x >. } ) |
| 16 | 4 15 | eqtr3id | |- ( ( ph /\ x e. X ) -> ( k e. { A } |-> x ) = { <. A , x >. } ) |
| 17 | 16 | mpteq2dva | |- ( ph -> ( x e. X |-> ( k e. { A } |-> x ) ) = ( x e. X |-> { <. A , x >. } ) ) |
| 18 | snex | |- { A } e. _V |
|
| 19 | 18 | a1i | |- ( ph -> { A } e. _V ) |
| 20 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 21 | 3 20 | syl | |- ( ph -> J e. Top ) |
| 22 | 2 21 | fsnd | |- ( ph -> { <. A , J >. } : { A } --> Top ) |
| 23 | 3 | cnmptid | |- ( ph -> ( x e. X |-> x ) e. ( J Cn J ) ) |
| 24 | 23 | adantr | |- ( ( ph /\ k e. { A } ) -> ( x e. X |-> x ) e. ( J Cn J ) ) |
| 25 | elsni | |- ( k e. { A } -> k = A ) |
|
| 26 | 25 | fveq2d | |- ( k e. { A } -> ( { <. A , J >. } ` k ) = ( { <. A , J >. } ` A ) ) |
| 27 | fvsng | |- ( ( A e. V /\ J e. ( TopOn ` X ) ) -> ( { <. A , J >. } ` A ) = J ) |
|
| 28 | 2 3 27 | syl2anc | |- ( ph -> ( { <. A , J >. } ` A ) = J ) |
| 29 | 26 28 | sylan9eqr | |- ( ( ph /\ k e. { A } ) -> ( { <. A , J >. } ` k ) = J ) |
| 30 | 29 | oveq2d | |- ( ( ph /\ k e. { A } ) -> ( J Cn ( { <. A , J >. } ` k ) ) = ( J Cn J ) ) |
| 31 | 24 30 | eleqtrrd | |- ( ( ph /\ k e. { A } ) -> ( x e. X |-> x ) e. ( J Cn ( { <. A , J >. } ` k ) ) ) |
| 32 | 1 3 19 22 31 | ptcn | |- ( ph -> ( x e. X |-> ( k e. { A } |-> x ) ) e. ( J Cn K ) ) |
| 33 | 17 32 | eqeltrrd | |- ( ph -> ( x e. X |-> { <. A , x >. } ) e. ( J Cn K ) ) |
| 34 | simprr | |- ( ( ph /\ ( x e. X /\ y = { <. A , x >. } ) ) -> y = { <. A , x >. } ) |
|
| 35 | 16 | adantrr | |- ( ( ph /\ ( x e. X /\ y = { <. A , x >. } ) ) -> ( k e. { A } |-> x ) = { <. A , x >. } ) |
| 36 | 34 35 | eqtr4d | |- ( ( ph /\ ( x e. X /\ y = { <. A , x >. } ) ) -> y = ( k e. { A } |-> x ) ) |
| 37 | simprl | |- ( ( ph /\ ( x e. X /\ y = { <. A , x >. } ) ) -> x e. X ) |
|
| 38 | 37 | adantr | |- ( ( ( ph /\ ( x e. X /\ y = { <. A , x >. } ) ) /\ k e. { A } ) -> x e. X ) |
| 39 | 38 | fmpttd | |- ( ( ph /\ ( x e. X /\ y = { <. A , x >. } ) ) -> ( k e. { A } |-> x ) : { A } --> X ) |
| 40 | toponmax | |- ( J e. ( TopOn ` X ) -> X e. J ) |
|
| 41 | 3 40 | syl | |- ( ph -> X e. J ) |
| 42 | 41 | adantr | |- ( ( ph /\ ( x e. X /\ y = { <. A , x >. } ) ) -> X e. J ) |
| 43 | elmapg | |- ( ( X e. J /\ { A } e. _V ) -> ( ( k e. { A } |-> x ) e. ( X ^m { A } ) <-> ( k e. { A } |-> x ) : { A } --> X ) ) |
|
| 44 | 42 18 43 | sylancl | |- ( ( ph /\ ( x e. X /\ y = { <. A , x >. } ) ) -> ( ( k e. { A } |-> x ) e. ( X ^m { A } ) <-> ( k e. { A } |-> x ) : { A } --> X ) ) |
| 45 | 39 44 | mpbird | |- ( ( ph /\ ( x e. X /\ y = { <. A , x >. } ) ) -> ( k e. { A } |-> x ) e. ( X ^m { A } ) ) |
| 46 | 36 45 | eqeltrd | |- ( ( ph /\ ( x e. X /\ y = { <. A , x >. } ) ) -> y e. ( X ^m { A } ) ) |
| 47 | 34 | fveq1d | |- ( ( ph /\ ( x e. X /\ y = { <. A , x >. } ) ) -> ( y ` A ) = ( { <. A , x >. } ` A ) ) |
| 48 | 2 | adantr | |- ( ( ph /\ ( x e. X /\ y = { <. A , x >. } ) ) -> A e. V ) |
| 49 | fvsng | |- ( ( A e. V /\ x e. X ) -> ( { <. A , x >. } ` A ) = x ) |
|
| 50 | 48 37 49 | syl2anc | |- ( ( ph /\ ( x e. X /\ y = { <. A , x >. } ) ) -> ( { <. A , x >. } ` A ) = x ) |
| 51 | 47 50 | eqtr2d | |- ( ( ph /\ ( x e. X /\ y = { <. A , x >. } ) ) -> x = ( y ` A ) ) |
| 52 | 46 51 | jca | |- ( ( ph /\ ( x e. X /\ y = { <. A , x >. } ) ) -> ( y e. ( X ^m { A } ) /\ x = ( y ` A ) ) ) |
| 53 | simprr | |- ( ( ph /\ ( y e. ( X ^m { A } ) /\ x = ( y ` A ) ) ) -> x = ( y ` A ) ) |
|
| 54 | simprl | |- ( ( ph /\ ( y e. ( X ^m { A } ) /\ x = ( y ` A ) ) ) -> y e. ( X ^m { A } ) ) |
|
| 55 | 41 | adantr | |- ( ( ph /\ ( y e. ( X ^m { A } ) /\ x = ( y ` A ) ) ) -> X e. J ) |
| 56 | elmapg | |- ( ( X e. J /\ { A } e. _V ) -> ( y e. ( X ^m { A } ) <-> y : { A } --> X ) ) |
|
| 57 | 55 18 56 | sylancl | |- ( ( ph /\ ( y e. ( X ^m { A } ) /\ x = ( y ` A ) ) ) -> ( y e. ( X ^m { A } ) <-> y : { A } --> X ) ) |
| 58 | 54 57 | mpbid | |- ( ( ph /\ ( y e. ( X ^m { A } ) /\ x = ( y ` A ) ) ) -> y : { A } --> X ) |
| 59 | snidg | |- ( A e. V -> A e. { A } ) |
|
| 60 | 2 59 | syl | |- ( ph -> A e. { A } ) |
| 61 | 60 | adantr | |- ( ( ph /\ ( y e. ( X ^m { A } ) /\ x = ( y ` A ) ) ) -> A e. { A } ) |
| 62 | 58 61 | ffvelcdmd | |- ( ( ph /\ ( y e. ( X ^m { A } ) /\ x = ( y ` A ) ) ) -> ( y ` A ) e. X ) |
| 63 | 53 62 | eqeltrd | |- ( ( ph /\ ( y e. ( X ^m { A } ) /\ x = ( y ` A ) ) ) -> x e. X ) |
| 64 | 2 | adantr | |- ( ( ph /\ ( y e. ( X ^m { A } ) /\ x = ( y ` A ) ) ) -> A e. V ) |
| 65 | fsn2g | |- ( A e. V -> ( y : { A } --> X <-> ( ( y ` A ) e. X /\ y = { <. A , ( y ` A ) >. } ) ) ) |
|
| 66 | 64 65 | syl | |- ( ( ph /\ ( y e. ( X ^m { A } ) /\ x = ( y ` A ) ) ) -> ( y : { A } --> X <-> ( ( y ` A ) e. X /\ y = { <. A , ( y ` A ) >. } ) ) ) |
| 67 | 58 66 | mpbid | |- ( ( ph /\ ( y e. ( X ^m { A } ) /\ x = ( y ` A ) ) ) -> ( ( y ` A ) e. X /\ y = { <. A , ( y ` A ) >. } ) ) |
| 68 | 67 | simprd | |- ( ( ph /\ ( y e. ( X ^m { A } ) /\ x = ( y ` A ) ) ) -> y = { <. A , ( y ` A ) >. } ) |
| 69 | 53 | opeq2d | |- ( ( ph /\ ( y e. ( X ^m { A } ) /\ x = ( y ` A ) ) ) -> <. A , x >. = <. A , ( y ` A ) >. ) |
| 70 | 69 | sneqd | |- ( ( ph /\ ( y e. ( X ^m { A } ) /\ x = ( y ` A ) ) ) -> { <. A , x >. } = { <. A , ( y ` A ) >. } ) |
| 71 | 68 70 | eqtr4d | |- ( ( ph /\ ( y e. ( X ^m { A } ) /\ x = ( y ` A ) ) ) -> y = { <. A , x >. } ) |
| 72 | 63 71 | jca | |- ( ( ph /\ ( y e. ( X ^m { A } ) /\ x = ( y ` A ) ) ) -> ( x e. X /\ y = { <. A , x >. } ) ) |
| 73 | 52 72 | impbida | |- ( ph -> ( ( x e. X /\ y = { <. A , x >. } ) <-> ( y e. ( X ^m { A } ) /\ x = ( y ` A ) ) ) ) |
| 74 | 73 | mptcnv | |- ( ph -> `' ( x e. X |-> { <. A , x >. } ) = ( y e. ( X ^m { A } ) |-> ( y ` A ) ) ) |
| 75 | xpsng | |- ( ( A e. V /\ J e. ( TopOn ` X ) ) -> ( { A } X. { J } ) = { <. A , J >. } ) |
|
| 76 | 2 3 75 | syl2anc | |- ( ph -> ( { A } X. { J } ) = { <. A , J >. } ) |
| 77 | 76 | eqcomd | |- ( ph -> { <. A , J >. } = ( { A } X. { J } ) ) |
| 78 | 77 | fveq2d | |- ( ph -> ( Xt_ ` { <. A , J >. } ) = ( Xt_ ` ( { A } X. { J } ) ) ) |
| 79 | 1 78 | eqtrid | |- ( ph -> K = ( Xt_ ` ( { A } X. { J } ) ) ) |
| 80 | eqid | |- ( Xt_ ` ( { A } X. { J } ) ) = ( Xt_ ` ( { A } X. { J } ) ) |
|
| 81 | 80 | pttoponconst | |- ( ( { A } e. _V /\ J e. ( TopOn ` X ) ) -> ( Xt_ ` ( { A } X. { J } ) ) e. ( TopOn ` ( X ^m { A } ) ) ) |
| 82 | 19 3 81 | syl2anc | |- ( ph -> ( Xt_ ` ( { A } X. { J } ) ) e. ( TopOn ` ( X ^m { A } ) ) ) |
| 83 | 79 82 | eqeltrd | |- ( ph -> K e. ( TopOn ` ( X ^m { A } ) ) ) |
| 84 | toponuni | |- ( K e. ( TopOn ` ( X ^m { A } ) ) -> ( X ^m { A } ) = U. K ) |
|
| 85 | 83 84 | syl | |- ( ph -> ( X ^m { A } ) = U. K ) |
| 86 | 85 | mpteq1d | |- ( ph -> ( y e. ( X ^m { A } ) |-> ( y ` A ) ) = ( y e. U. K |-> ( y ` A ) ) ) |
| 87 | 74 86 | eqtrd | |- ( ph -> `' ( x e. X |-> { <. A , x >. } ) = ( y e. U. K |-> ( y ` A ) ) ) |
| 88 | eqid | |- U. K = U. K |
|
| 89 | 88 1 | ptpjcn | |- ( ( { A } e. _V /\ { <. A , J >. } : { A } --> Top /\ A e. { A } ) -> ( y e. U. K |-> ( y ` A ) ) e. ( K Cn ( { <. A , J >. } ` A ) ) ) |
| 90 | 18 22 60 89 | mp3an2i | |- ( ph -> ( y e. U. K |-> ( y ` A ) ) e. ( K Cn ( { <. A , J >. } ` A ) ) ) |
| 91 | 28 | oveq2d | |- ( ph -> ( K Cn ( { <. A , J >. } ` A ) ) = ( K Cn J ) ) |
| 92 | 90 91 | eleqtrd | |- ( ph -> ( y e. U. K |-> ( y ` A ) ) e. ( K Cn J ) ) |
| 93 | 87 92 | eqeltrd | |- ( ph -> `' ( x e. X |-> { <. A , x >. } ) e. ( K Cn J ) ) |
| 94 | ishmeo | |- ( ( x e. X |-> { <. A , x >. } ) e. ( J Homeo K ) <-> ( ( x e. X |-> { <. A , x >. } ) e. ( J Cn K ) /\ `' ( x e. X |-> { <. A , x >. } ) e. ( K Cn J ) ) ) |
|
| 95 | 33 93 94 | sylanbrc | |- ( ph -> ( x e. X |-> { <. A , x >. } ) e. ( J Homeo K ) ) |