This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function analogue of subeq0 . (Contributed by Mario Carneiro, 24-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ofsubeq0 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( ( 𝐹 ∘f − 𝐺 ) = ( 𝐴 × { 0 } ) ↔ 𝐹 = 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 2 | 1 | ffnd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐹 Fn 𝐴 ) |
| 3 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐺 : 𝐴 ⟶ ℂ ) | |
| 4 | 3 | ffnd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐺 Fn 𝐴 ) |
| 5 | simp1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → 𝐴 ∈ 𝑉 ) | |
| 6 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 7 | eqidd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 8 | eqidd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 9 | 2 4 5 5 6 7 8 | ofval | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
| 10 | c0ex | ⊢ 0 ∈ V | |
| 11 | 10 | fvconst2 | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 12 | 11 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 13 | 9 12 | eqeq12d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) = ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) = 0 ) ) |
| 14 | 1 | ffvelcdmda | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 15 | 3 | ffvelcdmda | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 16 | 14 15 | subeq0ad | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) = 0 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 17 | 13 16 | bitrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) = ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 18 | 17 | ralbidva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) = ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 19 | 2 4 5 5 6 | offn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( 𝐹 ∘f − 𝐺 ) Fn 𝐴 ) |
| 20 | 10 | fconst | ⊢ ( 𝐴 × { 0 } ) : 𝐴 ⟶ { 0 } |
| 21 | ffn | ⊢ ( ( 𝐴 × { 0 } ) : 𝐴 ⟶ { 0 } → ( 𝐴 × { 0 } ) Fn 𝐴 ) | |
| 22 | 20 21 | ax-mp | ⊢ ( 𝐴 × { 0 } ) Fn 𝐴 |
| 23 | eqfnfv | ⊢ ( ( ( 𝐹 ∘f − 𝐺 ) Fn 𝐴 ∧ ( 𝐴 × { 0 } ) Fn 𝐴 ) → ( ( 𝐹 ∘f − 𝐺 ) = ( 𝐴 × { 0 } ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) = ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ) ) | |
| 24 | 19 22 23 | sylancl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( ( 𝐹 ∘f − 𝐺 ) = ( 𝐴 × { 0 } ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) = ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ) ) |
| 25 | eqfnfv | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐹 = 𝐺 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) | |
| 26 | 2 4 25 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( 𝐹 = 𝐺 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 27 | 18 24 26 | 3bitr4d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ) → ( ( 𝐹 ∘f − 𝐺 ) = ( 𝐴 × { 0 } ) ↔ 𝐹 = 𝐺 ) ) |