This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caofref.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| caofref.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | ||
| caofref.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 𝑅 𝑥 ) | ||
| Assertion | caofref | ⊢ ( 𝜑 → 𝐹 ∘r 𝑅 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | caofref.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | |
| 3 | caofref.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 𝑅 𝑥 ) | |
| 4 | id | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → 𝑥 = ( 𝐹 ‘ 𝑤 ) ) | |
| 5 | 4 4 | breq12d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( 𝑥 𝑅 𝑥 ↔ ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) |
| 6 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝑥 𝑅 𝑥 ) |
| 7 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑆 𝑥 𝑅 𝑥 ) |
| 8 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ) |
| 9 | 5 7 8 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) |
| 10 | 9 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) |
| 11 | 2 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 12 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 13 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 14 | 11 11 1 1 12 13 13 | ofrfval | ⊢ ( 𝜑 → ( 𝐹 ∘r 𝑅 𝐹 ↔ ∀ 𝑤 ∈ 𝐴 ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) |
| 15 | 10 14 | mpbird | ⊢ ( 𝜑 → 𝐹 ∘r 𝑅 𝐹 ) |