This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer a distributive law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caofdi.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| caofdi.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐾 ) | ||
| caofdi.3 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝑆 ) | ||
| caofdi.4 | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝑆 ) | ||
| caofdi.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑥 𝑇 ( 𝑦 𝑅 𝑧 ) ) = ( ( 𝑥 𝑇 𝑦 ) 𝑂 ( 𝑥 𝑇 𝑧 ) ) ) | ||
| Assertion | caofdi | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑇 ( 𝐺 ∘f 𝑅 𝐻 ) ) = ( ( 𝐹 ∘f 𝑇 𝐺 ) ∘f 𝑂 ( 𝐹 ∘f 𝑇 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofdi.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | caofdi.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐾 ) | |
| 3 | caofdi.3 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝑆 ) | |
| 4 | caofdi.4 | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝑆 ) | |
| 5 | caofdi.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑥 𝑇 ( 𝑦 𝑅 𝑧 ) ) = ( ( 𝑥 𝑇 𝑦 ) 𝑂 ( 𝑥 𝑇 𝑧 ) ) ) | |
| 6 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑥 𝑇 ( 𝑦 𝑅 𝑧 ) ) = ( ( 𝑥 𝑇 𝑦 ) 𝑂 ( 𝑥 𝑇 𝑧 ) ) ) |
| 7 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐾 ) |
| 8 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ) |
| 9 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑤 ) ∈ 𝑆 ) |
| 10 | 6 7 8 9 | caovdid | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( ( 𝐺 ‘ 𝑤 ) 𝑅 ( 𝐻 ‘ 𝑤 ) ) ) = ( ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) 𝑂 ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 11 | 10 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( ( 𝐺 ‘ 𝑤 ) 𝑅 ( 𝐻 ‘ 𝑤 ) ) ) ) = ( 𝑤 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) 𝑂 ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
| 12 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑤 ) 𝑅 ( 𝐻 ‘ 𝑤 ) ) ∈ V ) | |
| 13 | 2 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑤 ) ) ) |
| 14 | 3 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ) |
| 15 | 4 | feqmptd | ⊢ ( 𝜑 → 𝐻 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐻 ‘ 𝑤 ) ) ) |
| 16 | 1 8 9 14 15 | offval2 | ⊢ ( 𝜑 → ( 𝐺 ∘f 𝑅 𝐻 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐺 ‘ 𝑤 ) 𝑅 ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 17 | 1 7 12 13 16 | offval2 | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑇 ( 𝐺 ∘f 𝑅 𝐻 ) ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( ( 𝐺 ‘ 𝑤 ) 𝑅 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
| 18 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ∈ V ) | |
| 19 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ∈ V ) | |
| 20 | 1 7 8 13 14 | offval2 | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑇 𝐺 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 21 | 1 7 9 13 15 | offval2 | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑇 𝐻 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 22 | 1 18 19 20 21 | offval2 | ⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑇 𝐺 ) ∘f 𝑂 ( 𝐹 ∘f 𝑇 𝐻 ) ) = ( 𝑤 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) 𝑂 ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
| 23 | 11 17 22 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑇 ( 𝐺 ∘f 𝑅 𝐻 ) ) = ( ( 𝐹 ∘f 𝑇 𝐺 ) ∘f 𝑂 ( 𝐹 ∘f 𝑇 𝐻 ) ) ) |