This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrvsca.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrvsca.n | ⊢ ∙ = ( ·𝑠 ‘ 𝑆 ) | ||
| psrvsca.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| psrvsca.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrvsca.m | ⊢ · = ( .r ‘ 𝑅 ) | ||
| psrvsca.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| psrvsca.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) | ||
| psrvsca.y | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| Assertion | psrvsca | ⊢ ( 𝜑 → ( 𝑋 ∙ 𝐹 ) = ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrvsca.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrvsca.n | ⊢ ∙ = ( ·𝑠 ‘ 𝑆 ) | |
| 3 | psrvsca.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | psrvsca.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 5 | psrvsca.m | ⊢ · = ( .r ‘ 𝑅 ) | |
| 6 | psrvsca.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 7 | psrvsca.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) | |
| 8 | psrvsca.y | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 9 | sneq | ⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) | |
| 10 | 9 | xpeq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝐷 × { 𝑥 } ) = ( 𝐷 × { 𝑋 } ) ) |
| 11 | 10 | oveq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) = ( ( 𝐷 × { 𝑋 } ) ∘f · 𝑓 ) ) |
| 12 | oveq2 | ⊢ ( 𝑓 = 𝐹 → ( ( 𝐷 × { 𝑋 } ) ∘f · 𝑓 ) = ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ) | |
| 13 | 1 2 3 4 5 6 | psrvscafval | ⊢ ∙ = ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) |
| 14 | ovex | ⊢ ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ∈ V | |
| 15 | 11 12 13 14 | ovmpo | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝐹 ∈ 𝐵 ) → ( 𝑋 ∙ 𝐹 ) = ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ) |
| 16 | 7 8 15 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ∙ 𝐹 ) = ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ) |