This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative identity for the ring of power series. Part of psrass23 which does not require the scalar ring to be commutative. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by AV, 14-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| psrass.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| psrass.t | ⊢ × = ( .r ‘ 𝑆 ) | ||
| psrass.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrass.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| psrass.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| psrass23l.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| psrass23l.n | ⊢ · = ( ·𝑠 ‘ 𝑆 ) | ||
| psrass23l.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| Assertion | psrass23l | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 4 | psrass.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 5 | psrass.t | ⊢ × = ( .r ‘ 𝑆 ) | |
| 6 | psrass.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 7 | psrass.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | psrass.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | psrass23l.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 10 | psrass23l.n | ⊢ · = ( ·𝑠 ‘ 𝑆 ) | |
| 11 | psrass23l.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 12 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 13 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 14 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝐴 ∈ 𝐾 ) |
| 15 | 14 9 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 17 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑋 ∈ 𝐵 ) |
| 18 | ssrab2 | ⊢ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ⊆ 𝐷 | |
| 19 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) | |
| 20 | 18 19 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 ∈ 𝐷 ) |
| 21 | 1 10 12 6 13 4 16 17 20 | psrvscaval | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝐴 · 𝑋 ) ‘ 𝑥 ) = ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑋 ‘ 𝑥 ) ) ) |
| 22 | 21 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( ( 𝐴 · 𝑋 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = ( ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑋 ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) |
| 23 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑅 ∈ Ring ) |
| 24 | 1 12 4 6 17 | psrelbas | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 25 | 24 20 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑋 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 26 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑌 ∈ 𝐵 ) |
| 27 | 1 12 4 6 26 | psrelbas | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 28 | eqid | ⊢ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } | |
| 29 | 4 28 | psrbagconcl | ⊢ ( ( 𝑘 ∈ 𝐷 ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) |
| 30 | 29 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) |
| 31 | 18 30 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ 𝐷 ) |
| 32 | 27 31 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 33 | 12 13 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑋 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑋 ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) |
| 34 | 23 16 25 32 33 | syl13anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑋 ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) |
| 35 | 22 34 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( ( 𝐴 · 𝑋 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) |
| 36 | 35 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( ( 𝐴 · 𝑋 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) |
| 37 | 36 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( ( 𝐴 · 𝑋 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 38 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 39 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
| 40 | 4 | psrbaglefi | ⊢ ( 𝑘 ∈ 𝐷 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ) |
| 41 | 40 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ) |
| 42 | 12 13 23 25 32 | ringcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 43 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 44 | 4 43 | rabex2 | ⊢ 𝐷 ∈ V |
| 45 | 44 | mptrabex | ⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ∈ V |
| 46 | funmpt | ⊢ Fun ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) | |
| 47 | fvex | ⊢ ( 0g ‘ 𝑅 ) ∈ V | |
| 48 | 45 46 47 | 3pm3.2i | ⊢ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ∈ V ∧ Fun ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) |
| 49 | 48 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ∈ V ∧ Fun ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ) |
| 50 | suppssdm | ⊢ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ dom ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) | |
| 51 | eqid | ⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) | |
| 52 | 51 | dmmptss | ⊢ dom ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ⊆ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } |
| 53 | 50 52 | sstri | ⊢ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } |
| 54 | 53 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) |
| 55 | suppssfifsupp | ⊢ ( ( ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ∈ V ∧ Fun ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ∧ ( { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) | |
| 56 | 49 41 54 55 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 57 | 12 38 13 39 41 15 42 56 | gsummulc2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) = ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 58 | 37 57 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( ( 𝐴 · 𝑋 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) = ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 59 | 58 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( ( 𝐴 · 𝑋 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) ) |
| 60 | 1 10 9 6 3 11 7 | psrvscacl | ⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ 𝐵 ) |
| 61 | 1 6 13 5 4 60 8 | psrmulfval | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( ( 𝐴 · 𝑋 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 62 | 1 6 5 3 7 8 | psrmulcl | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 63 | 1 10 9 6 13 4 11 62 | psrvsca | ⊢ ( 𝜑 → ( 𝐴 · ( 𝑋 × 𝑌 ) ) = ( ( 𝐷 × { 𝐴 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) |
| 64 | 44 | a1i | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 65 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ∈ V ) | |
| 66 | fconstmpt | ⊢ ( 𝐷 × { 𝐴 } ) = ( 𝑘 ∈ 𝐷 ↦ 𝐴 ) | |
| 67 | 66 | a1i | ⊢ ( 𝜑 → ( 𝐷 × { 𝐴 } ) = ( 𝑘 ∈ 𝐷 ↦ 𝐴 ) ) |
| 68 | 1 6 13 5 4 7 8 | psrmulfval | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 69 | 64 14 65 67 68 | offval2 | ⊢ ( 𝜑 → ( ( 𝐷 × { 𝐴 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) ) |
| 70 | 63 69 | eqtrd | ⊢ ( 𝜑 → ( 𝐴 · ( 𝑋 × 𝑌 ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) ) |
| 71 | 59 61 70 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) |