This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative identities for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015) (Proof shortened by AV, 25-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| psrass.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| psrass.t | ⊢ × = ( .r ‘ 𝑆 ) | ||
| psrass.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrass.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| psrass.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| psrcom.c | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| psrass.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| psrass.n | ⊢ · = ( ·𝑠 ‘ 𝑆 ) | ||
| psrass.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| Assertion | psrass23 | ⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ∧ ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 4 | psrass.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 5 | psrass.t | ⊢ × = ( .r ‘ 𝑆 ) | |
| 6 | psrass.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 7 | psrass.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | psrass.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | psrcom.c | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 10 | psrass.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 11 | psrass.n | ⊢ · = ( ·𝑠 ‘ 𝑆 ) | |
| 12 | psrass.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 13 | 1 2 3 4 5 6 7 8 10 11 12 | psrass23l | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) |
| 14 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 15 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 16 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝐴 ∈ 𝐾 ) |
| 17 | 16 10 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 19 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑌 ∈ 𝐵 ) |
| 20 | ssrab2 | ⊢ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ⊆ 𝐷 | |
| 21 | eqid | ⊢ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } | |
| 22 | 4 21 | psrbagconcl | ⊢ ( ( 𝑘 ∈ 𝐷 ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) |
| 23 | 22 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) |
| 24 | 20 23 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ 𝐷 ) |
| 25 | 1 11 14 6 15 4 18 19 24 | psrvscaval | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝐴 · 𝑌 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) = ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) |
| 26 | 25 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝐴 · 𝑌 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) |
| 27 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑋 ∈ 𝐵 ) |
| 28 | 1 14 4 6 27 | psrelbas | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 29 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) | |
| 30 | 20 29 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 ∈ 𝐷 ) |
| 31 | 28 30 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑋 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 32 | 1 14 4 6 19 | psrelbas | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 33 | 32 24 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 34 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑅 ∈ CRing ) |
| 35 | 14 15 | crngcom | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 ) = ( 𝑣 ( .r ‘ 𝑅 ) 𝑢 ) ) |
| 36 | 35 | 3expb | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 ) = ( 𝑣 ( .r ‘ 𝑅 ) 𝑢 ) ) |
| 37 | 34 36 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 ) = ( 𝑣 ( .r ‘ 𝑅 ) 𝑢 ) ) |
| 38 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑅 ∈ Ring ) |
| 39 | 14 15 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ∧ 𝑤 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 ) ( .r ‘ 𝑅 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑅 ) ( 𝑣 ( .r ‘ 𝑅 ) 𝑤 ) ) ) |
| 40 | 38 39 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ∧ 𝑤 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 ) ( .r ‘ 𝑅 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑅 ) ( 𝑣 ( .r ‘ 𝑅 ) 𝑤 ) ) ) |
| 41 | 31 18 33 37 40 | caov12d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) |
| 42 | 26 41 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝐴 · 𝑌 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) |
| 43 | 42 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝐴 · 𝑌 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) |
| 44 | 43 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝐴 · 𝑌 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 45 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 46 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
| 47 | 4 | psrbaglefi | ⊢ ( 𝑘 ∈ 𝐷 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ) |
| 48 | 47 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ) |
| 49 | 14 15 38 31 33 | ringcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 50 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 51 | 4 50 | rabex2 | ⊢ 𝐷 ∈ V |
| 52 | 51 | mptrabex | ⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ∈ V |
| 53 | funmpt | ⊢ Fun ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) | |
| 54 | fvex | ⊢ ( 0g ‘ 𝑅 ) ∈ V | |
| 55 | 52 53 54 | 3pm3.2i | ⊢ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ∈ V ∧ Fun ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) |
| 56 | 55 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ∈ V ∧ Fun ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ) |
| 57 | suppssdm | ⊢ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ dom ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) | |
| 58 | eqid | ⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) | |
| 59 | 58 | dmmptss | ⊢ dom ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ⊆ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } |
| 60 | 57 59 | sstri | ⊢ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } |
| 61 | 60 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) |
| 62 | suppssfifsupp | ⊢ ( ( ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ∈ V ∧ Fun ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ∧ ( { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ∧ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) | |
| 63 | 56 48 61 62 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 64 | 14 45 15 46 48 17 49 63 | gsummulc2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( 𝐴 ( .r ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) = ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 65 | 44 64 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝐴 · 𝑌 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) = ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 66 | 65 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝐴 · 𝑌 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) ) |
| 67 | 1 11 10 6 3 12 8 | psrvscacl | ⊢ ( 𝜑 → ( 𝐴 · 𝑌 ) ∈ 𝐵 ) |
| 68 | 1 6 15 5 4 7 67 | psrmulfval | ⊢ ( 𝜑 → ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( 𝐴 · 𝑌 ) ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 69 | 1 6 5 3 7 8 | psrmulcl | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 70 | 1 11 10 6 15 4 12 69 | psrvsca | ⊢ ( 𝜑 → ( 𝐴 · ( 𝑋 × 𝑌 ) ) = ( ( 𝐷 × { 𝐴 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) |
| 71 | 51 | a1i | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 72 | ovex | ⊢ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ∈ V | |
| 73 | 72 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ∈ V ) |
| 74 | fconstmpt | ⊢ ( 𝐷 × { 𝐴 } ) = ( 𝑘 ∈ 𝐷 ↦ 𝐴 ) | |
| 75 | 74 | a1i | ⊢ ( 𝜑 → ( 𝐷 × { 𝐴 } ) = ( 𝑘 ∈ 𝐷 ↦ 𝐴 ) ) |
| 76 | 1 6 15 5 4 7 8 | psrmulfval | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 77 | 71 16 73 75 76 | offval2 | ⊢ ( 𝜑 → ( ( 𝐷 × { 𝐴 } ) ∘f ( .r ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) ) |
| 78 | 70 77 | eqtrd | ⊢ ( 𝜑 → ( 𝐴 · ( 𝑋 × 𝑌 ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝐴 ( .r ‘ 𝑅 ) ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) ) |
| 79 | 66 68 78 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) |
| 80 | 13 79 | jca | ⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ∧ ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) ) |