This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| psrass.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| psrass.t | ⊢ × = ( .r ‘ 𝑆 ) | ||
| psrass.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrass.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| psrass.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| psrcom.c | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| Assertion | psrcom | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( 𝑌 × 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 4 | psrass.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 5 | psrass.t | ⊢ × = ( .r ‘ 𝑆 ) | |
| 6 | psrass.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 7 | psrass.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | psrass.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | psrcom.c | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 11 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 12 | ringcmn | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) | |
| 13 | 3 12 | syl | ⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑅 ∈ CMnd ) |
| 15 | 4 | psrbaglefi | ⊢ ( 𝑥 ∈ 𝐷 → { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ∈ Fin ) |
| 16 | 15 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ∈ Fin ) |
| 17 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑅 ∈ Ring ) |
| 18 | 1 10 4 6 7 | psrelbas | ⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 20 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) | |
| 21 | breq1 | ⊢ ( 𝑔 = 𝑘 → ( 𝑔 ∘r ≤ 𝑥 ↔ 𝑘 ∘r ≤ 𝑥 ) ) | |
| 22 | 21 | elrab | ⊢ ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↔ ( 𝑘 ∈ 𝐷 ∧ 𝑘 ∘r ≤ 𝑥 ) ) |
| 23 | 20 22 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑘 ∈ 𝐷 ∧ 𝑘 ∘r ≤ 𝑥 ) ) |
| 24 | 23 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑘 ∈ 𝐷 ) |
| 25 | 19 24 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑋 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 26 | 1 10 4 6 8 | psrelbas | ⊢ ( 𝜑 → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 28 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑥 ∈ 𝐷 ) | |
| 29 | 4 | psrbagf | ⊢ ( 𝑘 ∈ 𝐷 → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 30 | 24 29 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 31 | 23 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑘 ∘r ≤ 𝑥 ) |
| 32 | 4 | psrbagcon | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑘 : 𝐼 ⟶ ℕ0 ∧ 𝑘 ∘r ≤ 𝑥 ) → ( ( 𝑥 ∘f − 𝑘 ) ∈ 𝐷 ∧ ( 𝑥 ∘f − 𝑘 ) ∘r ≤ 𝑥 ) ) |
| 33 | 28 30 31 32 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑥 ∘f − 𝑘 ) ∈ 𝐷 ∧ ( 𝑥 ∘f − 𝑘 ) ∘r ≤ 𝑥 ) ) |
| 34 | 33 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑘 ) ∈ 𝐷 ) |
| 35 | 27 34 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 36 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 37 | 10 36 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 38 | 17 25 35 37 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 39 | 38 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) : { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ⟶ ( Base ‘ 𝑅 ) ) |
| 40 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 41 | 4 40 | rabex2 | ⊢ 𝐷 ∈ V |
| 42 | 41 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐷 ∈ V ) |
| 43 | rabexg | ⊢ ( 𝐷 ∈ V → { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ∈ V ) | |
| 44 | 42 43 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ∈ V ) |
| 45 | 44 | mptexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ∈ V ) |
| 46 | funmpt | ⊢ Fun ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) | |
| 47 | 46 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → Fun ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) |
| 48 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 0g ‘ 𝑅 ) ∈ V ) | |
| 49 | suppssdm | ⊢ ( ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ dom ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) | |
| 50 | eqid | ⊢ ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) = ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) | |
| 51 | 50 | dmmptss | ⊢ dom ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ⊆ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } |
| 52 | 49 51 | sstri | ⊢ ( ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } |
| 53 | 52 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) |
| 54 | suppssfifsupp | ⊢ ( ( ( ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ∧ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ∈ Fin ∧ ( ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ) → ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) | |
| 55 | 45 47 48 16 53 54 | syl32anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 56 | eqid | ⊢ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } = { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } | |
| 57 | 4 56 | psrbagconf1o | ⊢ ( 𝑥 ∈ 𝐷 → ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑥 ∘f − 𝑗 ) ) : { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } –1-1-onto→ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) |
| 58 | 57 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑥 ∘f − 𝑗 ) ) : { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } –1-1-onto→ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) |
| 59 | 10 11 14 16 39 55 58 | gsumf1o | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) = ( 𝑅 Σg ( ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ∘ ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) |
| 60 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑥 ∈ 𝐷 ) | |
| 61 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) | |
| 62 | 4 56 | psrbagconcl | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑗 ) ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) |
| 63 | 60 61 62 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑗 ) ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) |
| 64 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑥 ∘f − 𝑗 ) ) = ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑥 ∘f − 𝑗 ) ) ) | |
| 65 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) = ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) | |
| 66 | fveq2 | ⊢ ( 𝑘 = ( 𝑥 ∘f − 𝑗 ) → ( 𝑋 ‘ 𝑘 ) = ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) | |
| 67 | oveq2 | ⊢ ( 𝑘 = ( 𝑥 ∘f − 𝑗 ) → ( 𝑥 ∘f − 𝑘 ) = ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) ) | |
| 68 | 67 | fveq2d | ⊢ ( 𝑘 = ( 𝑥 ∘f − 𝑗 ) → ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) = ( 𝑌 ‘ ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) ) ) |
| 69 | 66 68 | oveq12d | ⊢ ( 𝑘 = ( 𝑥 ∘f − 𝑗 ) → ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) = ( ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) ) ) ) |
| 70 | 63 64 65 69 | fmptco | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ∘ ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑥 ∘f − 𝑗 ) ) ) = ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) ) ) ) ) |
| 71 | 4 | psrbagf | ⊢ ( 𝑥 ∈ 𝐷 → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 72 | 71 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 73 | 72 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 74 | 73 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑧 ) ∈ ℕ0 ) |
| 75 | breq1 | ⊢ ( 𝑔 = 𝑗 → ( 𝑔 ∘r ≤ 𝑥 ↔ 𝑗 ∘r ≤ 𝑥 ) ) | |
| 76 | 75 | elrab | ⊢ ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↔ ( 𝑗 ∈ 𝐷 ∧ 𝑗 ∘r ≤ 𝑥 ) ) |
| 77 | 61 76 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑗 ∈ 𝐷 ∧ 𝑗 ∘r ≤ 𝑥 ) ) |
| 78 | 77 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑗 ∈ 𝐷 ) |
| 79 | 4 | psrbagf | ⊢ ( 𝑗 ∈ 𝐷 → 𝑗 : 𝐼 ⟶ ℕ0 ) |
| 80 | 78 79 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑗 : 𝐼 ⟶ ℕ0 ) |
| 81 | 80 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑗 ‘ 𝑧 ) ∈ ℕ0 ) |
| 82 | nn0cn | ⊢ ( ( 𝑥 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑥 ‘ 𝑧 ) ∈ ℂ ) | |
| 83 | nn0cn | ⊢ ( ( 𝑗 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑗 ‘ 𝑧 ) ∈ ℂ ) | |
| 84 | nncan | ⊢ ( ( ( 𝑥 ‘ 𝑧 ) ∈ ℂ ∧ ( 𝑗 ‘ 𝑧 ) ∈ ℂ ) → ( ( 𝑥 ‘ 𝑧 ) − ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) = ( 𝑗 ‘ 𝑧 ) ) | |
| 85 | 82 83 84 | syl2an | ⊢ ( ( ( 𝑥 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑗 ‘ 𝑧 ) ∈ ℕ0 ) → ( ( 𝑥 ‘ 𝑧 ) − ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) = ( 𝑗 ‘ 𝑧 ) ) |
| 86 | 74 81 85 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑧 ) − ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) = ( 𝑗 ‘ 𝑧 ) ) |
| 87 | 86 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) − ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ 𝐼 ↦ ( 𝑗 ‘ 𝑧 ) ) ) |
| 88 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝐼 ∈ 𝑉 ) |
| 89 | ovex | ⊢ ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ∈ V | |
| 90 | 89 | a1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ∈ V ) |
| 91 | 73 | feqmptd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑥 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑧 ) ) ) |
| 92 | 80 | feqmptd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑗 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑗 ‘ 𝑧 ) ) ) |
| 93 | 88 74 81 91 92 | offval2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑗 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) ) |
| 94 | 88 74 90 91 93 | offval2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) − ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) ) ) |
| 95 | 87 94 92 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) = 𝑗 ) |
| 96 | 95 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑌 ‘ ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) ) = ( 𝑌 ‘ 𝑗 ) ) |
| 97 | 96 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) ) ) = ( ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑗 ) ) ) |
| 98 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑅 ∈ CRing ) |
| 99 | 18 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 100 | 77 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑗 ∘r ≤ 𝑥 ) |
| 101 | 4 | psrbagcon | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑗 : 𝐼 ⟶ ℕ0 ∧ 𝑗 ∘r ≤ 𝑥 ) → ( ( 𝑥 ∘f − 𝑗 ) ∈ 𝐷 ∧ ( 𝑥 ∘f − 𝑗 ) ∘r ≤ 𝑥 ) ) |
| 102 | 60 80 100 101 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑥 ∘f − 𝑗 ) ∈ 𝐷 ∧ ( 𝑥 ∘f − 𝑗 ) ∘r ≤ 𝑥 ) ) |
| 103 | 102 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑗 ) ∈ 𝐷 ) |
| 104 | 99 103 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 105 | 26 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 106 | 105 78 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑌 ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 107 | 10 36 | crngcom | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑌 ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑗 ) ) = ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) |
| 108 | 98 104 106 107 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑗 ) ) = ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) |
| 109 | 97 108 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) ) ) = ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) |
| 110 | 109 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) ) ) ) = ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) |
| 111 | 70 110 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ∘ ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑥 ∘f − 𝑗 ) ) ) = ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) |
| 112 | 111 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑅 Σg ( ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ∘ ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑥 ∘f − 𝑗 ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) ) |
| 113 | 59 112 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) ) |
| 114 | 113 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) ) ) |
| 115 | 1 6 36 5 4 7 8 | psrmulfval | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) ) ) |
| 116 | 1 6 36 5 4 8 7 | psrmulfval | ⊢ ( 𝜑 → ( 𝑌 × 𝑋 ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) ) ) |
| 117 | 114 115 116 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( 𝑌 × 𝑋 ) ) |