This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of power series is a ring. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| Assertion | psrring | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrring.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrring.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrring.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 4 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) | |
| 5 | eqidd | ⊢ ( 𝜑 → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) ) | |
| 6 | eqidd | ⊢ ( 𝜑 → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) ) | |
| 7 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 8 | 3 7 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 9 | 1 2 8 | psrgrp | ⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 10 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 11 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 12 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ Ring ) |
| 13 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) | |
| 14 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) | |
| 15 | 1 10 11 12 13 14 | psrmulcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 16 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝐼 ∈ 𝑉 ) |
| 17 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ Ring ) |
| 18 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 19 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) | |
| 20 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) | |
| 21 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑆 ) ) | |
| 22 | 1 16 17 18 11 10 19 20 21 | psrass1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ( .r ‘ 𝑆 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ) ) |
| 23 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 24 | 1 16 17 18 11 10 19 20 21 23 | psrdi | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( .r ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ( +g ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑆 ) 𝑧 ) ) ) |
| 25 | 1 16 17 18 11 10 19 20 21 23 | psrdir | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( .r ‘ 𝑆 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑧 ) ( +g ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ) ) |
| 26 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 27 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 28 | eqid | ⊢ ( 𝑟 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑟 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑟 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑟 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) | |
| 29 | 1 2 3 18 26 27 28 10 | psr1cl | ⊢ ( 𝜑 → ( 𝑟 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑟 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 30 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝐼 ∈ 𝑉 ) |
| 31 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ Ring ) |
| 32 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) | |
| 33 | 1 30 31 18 26 27 28 10 11 32 | psrlidm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝑟 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑟 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ) |
| 34 | 1 30 31 18 26 27 28 10 11 32 | psrridm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( .r ‘ 𝑆 ) ( 𝑟 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑟 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = 𝑥 ) |
| 35 | 4 5 6 9 15 22 24 25 29 33 34 | isringd | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |