This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pserf.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| pserf.f | |- F = ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |
||
| pserf.a | |- ( ph -> A : NN0 --> CC ) |
||
| pserf.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
||
| psercn.s | |- S = ( `' abs " ( 0 [,) R ) ) |
||
| psercn.m | |- M = if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) |
||
| pserdv.b | |- B = ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` a ) + M ) / 2 ) ) |
||
| Assertion | pserdv | |- ( ph -> ( CC _D F ) = ( y e. S |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| 2 | pserf.f | |- F = ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |
|
| 3 | pserf.a | |- ( ph -> A : NN0 --> CC ) |
|
| 4 | pserf.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
|
| 5 | psercn.s | |- S = ( `' abs " ( 0 [,) R ) ) |
|
| 6 | psercn.m | |- M = if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) |
|
| 7 | pserdv.b | |- B = ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` a ) + M ) / 2 ) ) |
|
| 8 | dvfcn | |- ( CC _D F ) : dom ( CC _D F ) --> CC |
|
| 9 | ssidd | |- ( ph -> CC C_ CC ) |
|
| 10 | 1 2 3 4 5 6 | psercn | |- ( ph -> F e. ( S -cn-> CC ) ) |
| 11 | cncff | |- ( F e. ( S -cn-> CC ) -> F : S --> CC ) |
|
| 12 | 10 11 | syl | |- ( ph -> F : S --> CC ) |
| 13 | cnvimass | |- ( `' abs " ( 0 [,) R ) ) C_ dom abs |
|
| 14 | absf | |- abs : CC --> RR |
|
| 15 | 14 | fdmi | |- dom abs = CC |
| 16 | 13 15 | sseqtri | |- ( `' abs " ( 0 [,) R ) ) C_ CC |
| 17 | 5 16 | eqsstri | |- S C_ CC |
| 18 | 17 | a1i | |- ( ph -> S C_ CC ) |
| 19 | 9 12 18 | dvbss | |- ( ph -> dom ( CC _D F ) C_ S ) |
| 20 | ssidd | |- ( ( ph /\ a e. S ) -> CC C_ CC ) |
|
| 21 | 12 | adantr | |- ( ( ph /\ a e. S ) -> F : S --> CC ) |
| 22 | 17 | a1i | |- ( ( ph /\ a e. S ) -> S C_ CC ) |
| 23 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 24 | 0cnd | |- ( ( ph /\ a e. S ) -> 0 e. CC ) |
|
| 25 | 18 | sselda | |- ( ( ph /\ a e. S ) -> a e. CC ) |
| 26 | 25 | abscld | |- ( ( ph /\ a e. S ) -> ( abs ` a ) e. RR ) |
| 27 | 1 2 3 4 5 6 | psercnlem1 | |- ( ( ph /\ a e. S ) -> ( M e. RR+ /\ ( abs ` a ) < M /\ M < R ) ) |
| 28 | 27 | simp1d | |- ( ( ph /\ a e. S ) -> M e. RR+ ) |
| 29 | 28 | rpred | |- ( ( ph /\ a e. S ) -> M e. RR ) |
| 30 | 26 29 | readdcld | |- ( ( ph /\ a e. S ) -> ( ( abs ` a ) + M ) e. RR ) |
| 31 | 0red | |- ( ( ph /\ a e. S ) -> 0 e. RR ) |
|
| 32 | 25 | absge0d | |- ( ( ph /\ a e. S ) -> 0 <_ ( abs ` a ) ) |
| 33 | 26 28 | ltaddrpd | |- ( ( ph /\ a e. S ) -> ( abs ` a ) < ( ( abs ` a ) + M ) ) |
| 34 | 31 26 30 32 33 | lelttrd | |- ( ( ph /\ a e. S ) -> 0 < ( ( abs ` a ) + M ) ) |
| 35 | 30 34 | elrpd | |- ( ( ph /\ a e. S ) -> ( ( abs ` a ) + M ) e. RR+ ) |
| 36 | 35 | rphalfcld | |- ( ( ph /\ a e. S ) -> ( ( ( abs ` a ) + M ) / 2 ) e. RR+ ) |
| 37 | 36 | rpxrd | |- ( ( ph /\ a e. S ) -> ( ( ( abs ` a ) + M ) / 2 ) e. RR* ) |
| 38 | blssm | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ ( ( ( abs ` a ) + M ) / 2 ) e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` a ) + M ) / 2 ) ) C_ CC ) |
|
| 39 | 23 24 37 38 | mp3an2i | |- ( ( ph /\ a e. S ) -> ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` a ) + M ) / 2 ) ) C_ CC ) |
| 40 | 7 39 | eqsstrid | |- ( ( ph /\ a e. S ) -> B C_ CC ) |
| 41 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 42 | 41 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 43 | 42 | toponrestid | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 44 | 41 43 | dvres | |- ( ( ( CC C_ CC /\ F : S --> CC ) /\ ( S C_ CC /\ B C_ CC ) ) -> ( CC _D ( F |` B ) ) = ( ( CC _D F ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` B ) ) ) |
| 45 | 20 21 22 40 44 | syl22anc | |- ( ( ph /\ a e. S ) -> ( CC _D ( F |` B ) ) = ( ( CC _D F ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` B ) ) ) |
| 46 | resss | |- ( ( CC _D F ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` B ) ) C_ ( CC _D F ) |
|
| 47 | 45 46 | eqsstrdi | |- ( ( ph /\ a e. S ) -> ( CC _D ( F |` B ) ) C_ ( CC _D F ) ) |
| 48 | dmss | |- ( ( CC _D ( F |` B ) ) C_ ( CC _D F ) -> dom ( CC _D ( F |` B ) ) C_ dom ( CC _D F ) ) |
|
| 49 | 47 48 | syl | |- ( ( ph /\ a e. S ) -> dom ( CC _D ( F |` B ) ) C_ dom ( CC _D F ) ) |
| 50 | 1 2 3 4 5 6 | pserdvlem1 | |- ( ( ph /\ a e. S ) -> ( ( ( ( abs ` a ) + M ) / 2 ) e. RR+ /\ ( abs ` a ) < ( ( ( abs ` a ) + M ) / 2 ) /\ ( ( ( abs ` a ) + M ) / 2 ) < R ) ) |
| 51 | 1 2 3 4 5 50 | psercnlem2 | |- ( ( ph /\ a e. S ) -> ( a e. ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` a ) + M ) / 2 ) ) /\ ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` a ) + M ) / 2 ) ) C_ ( `' abs " ( 0 [,] ( ( ( abs ` a ) + M ) / 2 ) ) ) /\ ( `' abs " ( 0 [,] ( ( ( abs ` a ) + M ) / 2 ) ) ) C_ S ) ) |
| 52 | 51 | simp1d | |- ( ( ph /\ a e. S ) -> a e. ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` a ) + M ) / 2 ) ) ) |
| 53 | 52 7 | eleqtrrdi | |- ( ( ph /\ a e. S ) -> a e. B ) |
| 54 | 1 2 3 4 5 6 7 | pserdvlem2 | |- ( ( ph /\ a e. S ) -> ( CC _D ( F |` B ) ) = ( y e. B |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) ) |
| 55 | 54 | dmeqd | |- ( ( ph /\ a e. S ) -> dom ( CC _D ( F |` B ) ) = dom ( y e. B |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) ) |
| 56 | dmmptg | |- ( A. y e. B sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) e. _V -> dom ( y e. B |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) = B ) |
|
| 57 | sumex | |- sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) e. _V |
|
| 58 | 57 | a1i | |- ( y e. B -> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) e. _V ) |
| 59 | 56 58 | mprg | |- dom ( y e. B |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) = B |
| 60 | 55 59 | eqtrdi | |- ( ( ph /\ a e. S ) -> dom ( CC _D ( F |` B ) ) = B ) |
| 61 | 53 60 | eleqtrrd | |- ( ( ph /\ a e. S ) -> a e. dom ( CC _D ( F |` B ) ) ) |
| 62 | 49 61 | sseldd | |- ( ( ph /\ a e. S ) -> a e. dom ( CC _D F ) ) |
| 63 | 19 62 | eqelssd | |- ( ph -> dom ( CC _D F ) = S ) |
| 64 | 63 | feq2d | |- ( ph -> ( ( CC _D F ) : dom ( CC _D F ) --> CC <-> ( CC _D F ) : S --> CC ) ) |
| 65 | 8 64 | mpbii | |- ( ph -> ( CC _D F ) : S --> CC ) |
| 66 | 65 | feqmptd | |- ( ph -> ( CC _D F ) = ( a e. S |-> ( ( CC _D F ) ` a ) ) ) |
| 67 | ffun | |- ( ( CC _D F ) : dom ( CC _D F ) --> CC -> Fun ( CC _D F ) ) |
|
| 68 | 8 67 | mp1i | |- ( ( ph /\ a e. S ) -> Fun ( CC _D F ) ) |
| 69 | funssfv | |- ( ( Fun ( CC _D F ) /\ ( CC _D ( F |` B ) ) C_ ( CC _D F ) /\ a e. dom ( CC _D ( F |` B ) ) ) -> ( ( CC _D F ) ` a ) = ( ( CC _D ( F |` B ) ) ` a ) ) |
|
| 70 | 68 47 61 69 | syl3anc | |- ( ( ph /\ a e. S ) -> ( ( CC _D F ) ` a ) = ( ( CC _D ( F |` B ) ) ` a ) ) |
| 71 | 54 | fveq1d | |- ( ( ph /\ a e. S ) -> ( ( CC _D ( F |` B ) ) ` a ) = ( ( y e. B |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) ` a ) ) |
| 72 | oveq1 | |- ( y = a -> ( y ^ k ) = ( a ^ k ) ) |
|
| 73 | 72 | oveq2d | |- ( y = a -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) = ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) ) |
| 74 | 73 | sumeq2sdv | |- ( y = a -> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) = sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) ) |
| 75 | eqid | |- ( y e. B |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) = ( y e. B |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) |
|
| 76 | sumex | |- sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) e. _V |
|
| 77 | 74 75 76 | fvmpt | |- ( a e. B -> ( ( y e. B |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) ` a ) = sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) ) |
| 78 | 53 77 | syl | |- ( ( ph /\ a e. S ) -> ( ( y e. B |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) ` a ) = sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) ) |
| 79 | 70 71 78 | 3eqtrd | |- ( ( ph /\ a e. S ) -> ( ( CC _D F ) ` a ) = sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) ) |
| 80 | 79 | mpteq2dva | |- ( ph -> ( a e. S |-> ( ( CC _D F ) ` a ) ) = ( a e. S |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) ) ) |
| 81 | 66 80 | eqtrd | |- ( ph -> ( CC _D F ) = ( a e. S |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) ) ) |
| 82 | oveq1 | |- ( a = y -> ( a ^ k ) = ( y ^ k ) ) |
|
| 83 | 82 | oveq2d | |- ( a = y -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) = ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) |
| 84 | 83 | sumeq2sdv | |- ( a = y -> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) = sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) |
| 85 | 84 | cbvmptv | |- ( a e. S |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) ) = ( y e. S |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) |
| 86 | 81 85 | eqtrdi | |- ( ph -> ( CC _D F ) = ( y e. S |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) ) |