This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmptid.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmpt11.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| cnmpt11f.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐾 Cn 𝐿 ) ) | ||
| Assertion | cnmpt11f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ ( 𝐽 Cn 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptid.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmpt11.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 3 | cnmpt11f.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐾 Cn 𝐿 ) ) | |
| 4 | cntop2 | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 5 | 2 4 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 6 | toptopon2 | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) | |
| 7 | 5 6 | sylib | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 8 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 9 | eqid | ⊢ ∪ 𝐿 = ∪ 𝐿 | |
| 10 | 8 9 | cnf | ⊢ ( 𝐹 ∈ ( 𝐾 Cn 𝐿 ) → 𝐹 : ∪ 𝐾 ⟶ ∪ 𝐿 ) |
| 11 | 3 10 | syl | ⊢ ( 𝜑 → 𝐹 : ∪ 𝐾 ⟶ ∪ 𝐿 ) |
| 12 | 11 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ∪ 𝐾 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 13 | 12 3 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑦 ∈ ∪ 𝐾 ↦ ( 𝐹 ‘ 𝑦 ) ) ∈ ( 𝐾 Cn 𝐿 ) ) |
| 14 | fveq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 15 | 1 2 7 13 14 | cnmpt11 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ ( 𝐽 Cn 𝐿 ) ) |