This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a family of topological groups is a topological group. (Contributed by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdstgpd.y | |- Y = ( S Xs_ R ) |
|
| prdstgpd.i | |- ( ph -> I e. W ) |
||
| prdstgpd.s | |- ( ph -> S e. V ) |
||
| prdstgpd.r | |- ( ph -> R : I --> TopGrp ) |
||
| Assertion | prdstgpd | |- ( ph -> Y e. TopGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdstgpd.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdstgpd.i | |- ( ph -> I e. W ) |
|
| 3 | prdstgpd.s | |- ( ph -> S e. V ) |
|
| 4 | prdstgpd.r | |- ( ph -> R : I --> TopGrp ) |
|
| 5 | tgpgrp | |- ( x e. TopGrp -> x e. Grp ) |
|
| 6 | 5 | ssriv | |- TopGrp C_ Grp |
| 7 | fss | |- ( ( R : I --> TopGrp /\ TopGrp C_ Grp ) -> R : I --> Grp ) |
|
| 8 | 4 6 7 | sylancl | |- ( ph -> R : I --> Grp ) |
| 9 | 1 2 3 8 | prdsgrpd | |- ( ph -> Y e. Grp ) |
| 10 | tgptmd | |- ( x e. TopGrp -> x e. TopMnd ) |
|
| 11 | 10 | ssriv | |- TopGrp C_ TopMnd |
| 12 | fss | |- ( ( R : I --> TopGrp /\ TopGrp C_ TopMnd ) -> R : I --> TopMnd ) |
|
| 13 | 4 11 12 | sylancl | |- ( ph -> R : I --> TopMnd ) |
| 14 | 1 2 3 13 | prdstmdd | |- ( ph -> Y e. TopMnd ) |
| 15 | eqid | |- ( Xt_ ` ( TopOpen o. R ) ) = ( Xt_ ` ( TopOpen o. R ) ) |
|
| 16 | eqid | |- ( TopOpen ` Y ) = ( TopOpen ` Y ) |
|
| 17 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 18 | 16 17 | tmdtopon | |- ( Y e. TopMnd -> ( TopOpen ` Y ) e. ( TopOn ` ( Base ` Y ) ) ) |
| 19 | 14 18 | syl | |- ( ph -> ( TopOpen ` Y ) e. ( TopOn ` ( Base ` Y ) ) ) |
| 20 | topnfn | |- TopOpen Fn _V |
|
| 21 | 4 | ffnd | |- ( ph -> R Fn I ) |
| 22 | dffn2 | |- ( R Fn I <-> R : I --> _V ) |
|
| 23 | 21 22 | sylib | |- ( ph -> R : I --> _V ) |
| 24 | fnfco | |- ( ( TopOpen Fn _V /\ R : I --> _V ) -> ( TopOpen o. R ) Fn I ) |
|
| 25 | 20 23 24 | sylancr | |- ( ph -> ( TopOpen o. R ) Fn I ) |
| 26 | fvco3 | |- ( ( R : I --> TopGrp /\ y e. I ) -> ( ( TopOpen o. R ) ` y ) = ( TopOpen ` ( R ` y ) ) ) |
|
| 27 | 4 26 | sylan | |- ( ( ph /\ y e. I ) -> ( ( TopOpen o. R ) ` y ) = ( TopOpen ` ( R ` y ) ) ) |
| 28 | 4 | ffvelcdmda | |- ( ( ph /\ y e. I ) -> ( R ` y ) e. TopGrp ) |
| 29 | eqid | |- ( TopOpen ` ( R ` y ) ) = ( TopOpen ` ( R ` y ) ) |
|
| 30 | eqid | |- ( Base ` ( R ` y ) ) = ( Base ` ( R ` y ) ) |
|
| 31 | 29 30 | tgptopon | |- ( ( R ` y ) e. TopGrp -> ( TopOpen ` ( R ` y ) ) e. ( TopOn ` ( Base ` ( R ` y ) ) ) ) |
| 32 | topontop | |- ( ( TopOpen ` ( R ` y ) ) e. ( TopOn ` ( Base ` ( R ` y ) ) ) -> ( TopOpen ` ( R ` y ) ) e. Top ) |
|
| 33 | 28 31 32 | 3syl | |- ( ( ph /\ y e. I ) -> ( TopOpen ` ( R ` y ) ) e. Top ) |
| 34 | 27 33 | eqeltrd | |- ( ( ph /\ y e. I ) -> ( ( TopOpen o. R ) ` y ) e. Top ) |
| 35 | 34 | ralrimiva | |- ( ph -> A. y e. I ( ( TopOpen o. R ) ` y ) e. Top ) |
| 36 | ffnfv | |- ( ( TopOpen o. R ) : I --> Top <-> ( ( TopOpen o. R ) Fn I /\ A. y e. I ( ( TopOpen o. R ) ` y ) e. Top ) ) |
|
| 37 | 25 35 36 | sylanbrc | |- ( ph -> ( TopOpen o. R ) : I --> Top ) |
| 38 | 19 | adantr | |- ( ( ph /\ y e. I ) -> ( TopOpen ` Y ) e. ( TopOn ` ( Base ` Y ) ) ) |
| 39 | 1 3 2 21 16 | prdstopn | |- ( ph -> ( TopOpen ` Y ) = ( Xt_ ` ( TopOpen o. R ) ) ) |
| 40 | 39 | adantr | |- ( ( ph /\ y e. I ) -> ( TopOpen ` Y ) = ( Xt_ ` ( TopOpen o. R ) ) ) |
| 41 | 40 | eqcomd | |- ( ( ph /\ y e. I ) -> ( Xt_ ` ( TopOpen o. R ) ) = ( TopOpen ` Y ) ) |
| 42 | 41 38 | eqeltrd | |- ( ( ph /\ y e. I ) -> ( Xt_ ` ( TopOpen o. R ) ) e. ( TopOn ` ( Base ` Y ) ) ) |
| 43 | toponuni | |- ( ( Xt_ ` ( TopOpen o. R ) ) e. ( TopOn ` ( Base ` Y ) ) -> ( Base ` Y ) = U. ( Xt_ ` ( TopOpen o. R ) ) ) |
|
| 44 | mpteq1 | |- ( ( Base ` Y ) = U. ( Xt_ ` ( TopOpen o. R ) ) -> ( x e. ( Base ` Y ) |-> ( x ` y ) ) = ( x e. U. ( Xt_ ` ( TopOpen o. R ) ) |-> ( x ` y ) ) ) |
|
| 45 | 42 43 44 | 3syl | |- ( ( ph /\ y e. I ) -> ( x e. ( Base ` Y ) |-> ( x ` y ) ) = ( x e. U. ( Xt_ ` ( TopOpen o. R ) ) |-> ( x ` y ) ) ) |
| 46 | 2 | adantr | |- ( ( ph /\ y e. I ) -> I e. W ) |
| 47 | 37 | adantr | |- ( ( ph /\ y e. I ) -> ( TopOpen o. R ) : I --> Top ) |
| 48 | simpr | |- ( ( ph /\ y e. I ) -> y e. I ) |
|
| 49 | eqid | |- U. ( Xt_ ` ( TopOpen o. R ) ) = U. ( Xt_ ` ( TopOpen o. R ) ) |
|
| 50 | 49 15 | ptpjcn | |- ( ( I e. W /\ ( TopOpen o. R ) : I --> Top /\ y e. I ) -> ( x e. U. ( Xt_ ` ( TopOpen o. R ) ) |-> ( x ` y ) ) e. ( ( Xt_ ` ( TopOpen o. R ) ) Cn ( ( TopOpen o. R ) ` y ) ) ) |
| 51 | 46 47 48 50 | syl3anc | |- ( ( ph /\ y e. I ) -> ( x e. U. ( Xt_ ` ( TopOpen o. R ) ) |-> ( x ` y ) ) e. ( ( Xt_ ` ( TopOpen o. R ) ) Cn ( ( TopOpen o. R ) ` y ) ) ) |
| 52 | 45 51 | eqeltrd | |- ( ( ph /\ y e. I ) -> ( x e. ( Base ` Y ) |-> ( x ` y ) ) e. ( ( Xt_ ` ( TopOpen o. R ) ) Cn ( ( TopOpen o. R ) ` y ) ) ) |
| 53 | 41 27 | oveq12d | |- ( ( ph /\ y e. I ) -> ( ( Xt_ ` ( TopOpen o. R ) ) Cn ( ( TopOpen o. R ) ` y ) ) = ( ( TopOpen ` Y ) Cn ( TopOpen ` ( R ` y ) ) ) ) |
| 54 | 52 53 | eleqtrd | |- ( ( ph /\ y e. I ) -> ( x e. ( Base ` Y ) |-> ( x ` y ) ) e. ( ( TopOpen ` Y ) Cn ( TopOpen ` ( R ` y ) ) ) ) |
| 55 | eqid | |- ( invg ` ( R ` y ) ) = ( invg ` ( R ` y ) ) |
|
| 56 | 29 55 | tgpinv | |- ( ( R ` y ) e. TopGrp -> ( invg ` ( R ` y ) ) e. ( ( TopOpen ` ( R ` y ) ) Cn ( TopOpen ` ( R ` y ) ) ) ) |
| 57 | 28 56 | syl | |- ( ( ph /\ y e. I ) -> ( invg ` ( R ` y ) ) e. ( ( TopOpen ` ( R ` y ) ) Cn ( TopOpen ` ( R ` y ) ) ) ) |
| 58 | 38 54 57 | cnmpt11f | |- ( ( ph /\ y e. I ) -> ( x e. ( Base ` Y ) |-> ( ( invg ` ( R ` y ) ) ` ( x ` y ) ) ) e. ( ( TopOpen ` Y ) Cn ( TopOpen ` ( R ` y ) ) ) ) |
| 59 | 27 | oveq2d | |- ( ( ph /\ y e. I ) -> ( ( TopOpen ` Y ) Cn ( ( TopOpen o. R ) ` y ) ) = ( ( TopOpen ` Y ) Cn ( TopOpen ` ( R ` y ) ) ) ) |
| 60 | 58 59 | eleqtrrd | |- ( ( ph /\ y e. I ) -> ( x e. ( Base ` Y ) |-> ( ( invg ` ( R ` y ) ) ` ( x ` y ) ) ) e. ( ( TopOpen ` Y ) Cn ( ( TopOpen o. R ) ` y ) ) ) |
| 61 | 15 19 2 37 60 | ptcn | |- ( ph -> ( x e. ( Base ` Y ) |-> ( y e. I |-> ( ( invg ` ( R ` y ) ) ` ( x ` y ) ) ) ) e. ( ( TopOpen ` Y ) Cn ( Xt_ ` ( TopOpen o. R ) ) ) ) |
| 62 | eqid | |- ( invg ` Y ) = ( invg ` Y ) |
|
| 63 | 17 62 | grpinvf | |- ( Y e. Grp -> ( invg ` Y ) : ( Base ` Y ) --> ( Base ` Y ) ) |
| 64 | 9 63 | syl | |- ( ph -> ( invg ` Y ) : ( Base ` Y ) --> ( Base ` Y ) ) |
| 65 | 64 | feqmptd | |- ( ph -> ( invg ` Y ) = ( x e. ( Base ` Y ) |-> ( ( invg ` Y ) ` x ) ) ) |
| 66 | 2 | adantr | |- ( ( ph /\ x e. ( Base ` Y ) ) -> I e. W ) |
| 67 | 3 | adantr | |- ( ( ph /\ x e. ( Base ` Y ) ) -> S e. V ) |
| 68 | 8 | adantr | |- ( ( ph /\ x e. ( Base ` Y ) ) -> R : I --> Grp ) |
| 69 | simpr | |- ( ( ph /\ x e. ( Base ` Y ) ) -> x e. ( Base ` Y ) ) |
|
| 70 | 1 66 67 68 17 62 69 | prdsinvgd | |- ( ( ph /\ x e. ( Base ` Y ) ) -> ( ( invg ` Y ) ` x ) = ( y e. I |-> ( ( invg ` ( R ` y ) ) ` ( x ` y ) ) ) ) |
| 71 | 70 | mpteq2dva | |- ( ph -> ( x e. ( Base ` Y ) |-> ( ( invg ` Y ) ` x ) ) = ( x e. ( Base ` Y ) |-> ( y e. I |-> ( ( invg ` ( R ` y ) ) ` ( x ` y ) ) ) ) ) |
| 72 | 65 71 | eqtrd | |- ( ph -> ( invg ` Y ) = ( x e. ( Base ` Y ) |-> ( y e. I |-> ( ( invg ` ( R ` y ) ) ` ( x ` y ) ) ) ) ) |
| 73 | 39 | oveq2d | |- ( ph -> ( ( TopOpen ` Y ) Cn ( TopOpen ` Y ) ) = ( ( TopOpen ` Y ) Cn ( Xt_ ` ( TopOpen o. R ) ) ) ) |
| 74 | 61 72 73 | 3eltr4d | |- ( ph -> ( invg ` Y ) e. ( ( TopOpen ` Y ) Cn ( TopOpen ` Y ) ) ) |
| 75 | 16 62 | istgp | |- ( Y e. TopGrp <-> ( Y e. Grp /\ Y e. TopMnd /\ ( invg ` Y ) e. ( ( TopOpen ` Y ) Cn ( TopOpen ` Y ) ) ) ) |
| 76 | 9 14 74 75 | syl3anbrc | |- ( ph -> Y e. TopGrp ) |