This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a family of groups is a group. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsgrpd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsgrpd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsgrpd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsgrpd.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) | ||
| Assertion | prdsgrpd | ⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsgrpd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsgrpd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 3 | prdsgrpd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdsgrpd.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) | |
| 5 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) | |
| 6 | eqidd | ⊢ ( 𝜑 → ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) ) | |
| 7 | grpmnd | ⊢ ( 𝑎 ∈ Grp → 𝑎 ∈ Mnd ) | |
| 8 | 7 | ssriv | ⊢ Grp ⊆ Mnd |
| 9 | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ Grp ∧ Grp ⊆ Mnd ) → 𝑅 : 𝐼 ⟶ Mnd ) | |
| 10 | 4 8 9 | sylancl | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) |
| 11 | 1 2 3 10 | prds0g | ⊢ ( 𝜑 → ( 0g ∘ 𝑅 ) = ( 0g ‘ 𝑌 ) ) |
| 12 | 1 2 3 10 | prdsmndd | ⊢ ( 𝜑 → 𝑌 ∈ Mnd ) |
| 13 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 14 | eqid | ⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) | |
| 15 | 3 | elexd | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑆 ∈ V ) |
| 17 | 2 | elexd | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝐼 ∈ V ) |
| 19 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑅 : 𝐼 ⟶ Grp ) |
| 20 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) | |
| 21 | eqid | ⊢ ( 0g ∘ 𝑅 ) = ( 0g ∘ 𝑅 ) | |
| 22 | eqid | ⊢ ( 𝑏 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) = ( 𝑏 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) | |
| 23 | 1 13 14 16 18 19 20 21 22 | prdsinvlem | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑏 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) ∈ ( Base ‘ 𝑌 ) ∧ ( ( 𝑏 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) ( +g ‘ 𝑌 ) 𝑎 ) = ( 0g ∘ 𝑅 ) ) ) |
| 24 | 23 | simpld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑏 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 25 | 23 | simprd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑏 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) ( +g ‘ 𝑌 ) 𝑎 ) = ( 0g ∘ 𝑅 ) ) |
| 26 | 5 6 11 12 24 25 | isgrpd2 | ⊢ ( 𝜑 → 𝑌 ∈ Grp ) |