This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation in a product of groups. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsgrpd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsgrpd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsgrpd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsgrpd.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) | ||
| prdsinvgd.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsinvgd.n | ⊢ 𝑁 = ( invg ‘ 𝑌 ) | ||
| prdsinvgd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | prdsinvgd | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsgrpd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsgrpd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 3 | prdsgrpd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdsgrpd.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) | |
| 5 | prdsinvgd.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 6 | prdsinvgd.n | ⊢ 𝑁 = ( invg ‘ 𝑌 ) | |
| 7 | prdsinvgd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | eqid | ⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) | |
| 9 | 3 | elexd | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 10 | 2 | elexd | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 11 | eqid | ⊢ ( 0g ∘ 𝑅 ) = ( 0g ∘ 𝑅 ) | |
| 12 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) | |
| 13 | 1 5 8 9 10 4 7 11 12 | prdsinvlem | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ∈ 𝐵 ∧ ( ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ( +g ‘ 𝑌 ) 𝑋 ) = ( 0g ∘ 𝑅 ) ) ) |
| 14 | 13 | simprd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ( +g ‘ 𝑌 ) 𝑋 ) = ( 0g ∘ 𝑅 ) ) |
| 15 | grpmnd | ⊢ ( 𝑎 ∈ Grp → 𝑎 ∈ Mnd ) | |
| 16 | 15 | ssriv | ⊢ Grp ⊆ Mnd |
| 17 | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ Grp ∧ Grp ⊆ Mnd ) → 𝑅 : 𝐼 ⟶ Mnd ) | |
| 18 | 4 16 17 | sylancl | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) |
| 19 | 1 2 3 18 | prds0g | ⊢ ( 𝜑 → ( 0g ∘ 𝑅 ) = ( 0g ‘ 𝑌 ) ) |
| 20 | 14 19 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ( +g ‘ 𝑌 ) 𝑋 ) = ( 0g ‘ 𝑌 ) ) |
| 21 | 1 2 3 4 | prdsgrpd | ⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
| 22 | 13 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ∈ 𝐵 ) |
| 23 | eqid | ⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) | |
| 24 | 5 8 23 6 | grpinvid2 | ⊢ ( ( 𝑌 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ↔ ( ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ( +g ‘ 𝑌 ) 𝑋 ) = ( 0g ‘ 𝑌 ) ) ) |
| 25 | 21 7 22 24 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ↔ ( ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ( +g ‘ 𝑌 ) 𝑋 ) = ( 0g ‘ 𝑌 ) ) ) |
| 26 | 20 25 | mpbird | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) |