This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product metric is a metric when the index set is finite. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsmet.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| prdsmet.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsmet.v | ⊢ 𝑉 = ( Base ‘ 𝑅 ) | ||
| prdsmet.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | ||
| prdsmet.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | ||
| prdsmet.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | ||
| prdsmet.i | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | ||
| prdsmet.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ 𝑍 ) | ||
| prdsmet.m | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( Met ‘ 𝑉 ) ) | ||
| Assertion | prdsmet | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsmet.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| 2 | prdsmet.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsmet.v | ⊢ 𝑉 = ( Base ‘ 𝑅 ) | |
| 4 | prdsmet.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | |
| 5 | prdsmet.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | |
| 6 | prdsmet.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | |
| 7 | prdsmet.i | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | |
| 8 | prdsmet.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ 𝑍 ) | |
| 9 | prdsmet.m | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( Met ‘ 𝑉 ) ) | |
| 10 | metxmet | ⊢ ( 𝐸 ∈ ( Met ‘ 𝑉 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 12 | 1 2 3 4 5 6 7 8 11 | prdsxmet | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
| 13 | 1 2 3 4 5 6 7 8 11 | prdsdsf | ⊢ ( 𝜑 → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] +∞ ) ) |
| 14 | 13 | ffnd | ⊢ ( 𝜑 → 𝐷 Fn ( 𝐵 × 𝐵 ) ) |
| 15 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑆 ∈ 𝑊 ) |
| 16 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝐼 ∈ Fin ) |
| 17 | 8 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑍 ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑍 ) |
| 19 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 ∈ 𝐵 ) | |
| 20 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 ∈ 𝐵 ) | |
| 21 | 1 2 15 16 18 19 20 3 4 5 | prdsdsval3 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 𝐷 𝑔 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 22 | 1 2 15 16 18 3 19 | prdsbascl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) |
| 23 | 1 2 15 16 18 3 20 | prdsbascl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) |
| 24 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) ↔ ( ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) ) | |
| 25 | metcl | ⊢ ( ( 𝐸 ∈ ( Met ‘ 𝑉 ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) | |
| 26 | 25 | 3expib | ⊢ ( 𝐸 ∈ ( Met ‘ 𝑉 ) → ( ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) ) |
| 27 | 9 26 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) ) |
| 28 | 27 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) ) |
| 29 | 28 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) ) |
| 30 | 24 29 | biimtrrid | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ( ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) ) |
| 31 | 22 23 30 | mp2and | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) |
| 32 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) | |
| 33 | 32 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ↔ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) : 𝐼 ⟶ ℝ ) |
| 34 | 31 33 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) : 𝐼 ⟶ ℝ ) |
| 35 | 34 | frnd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ⊆ ℝ ) |
| 36 | 0red | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 0 ∈ ℝ ) | |
| 37 | 36 | snssd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → { 0 } ⊆ ℝ ) |
| 38 | 35 37 | unssd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ ) |
| 39 | xrltso | ⊢ < Or ℝ* | |
| 40 | 39 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → < Or ℝ* ) |
| 41 | mptfi | ⊢ ( 𝐼 ∈ Fin → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∈ Fin ) | |
| 42 | rnfi | ⊢ ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∈ Fin → ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∈ Fin ) | |
| 43 | 16 41 42 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∈ Fin ) |
| 44 | snfi | ⊢ { 0 } ∈ Fin | |
| 45 | unfi | ⊢ ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∈ Fin ∧ { 0 } ∈ Fin ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ∈ Fin ) | |
| 46 | 43 44 45 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ∈ Fin ) |
| 47 | ssun2 | ⊢ { 0 } ⊆ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) | |
| 48 | c0ex | ⊢ 0 ∈ V | |
| 49 | 48 | snss | ⊢ ( 0 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ↔ { 0 } ⊆ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) |
| 50 | 47 49 | mpbir | ⊢ 0 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) |
| 51 | ne0i | ⊢ ( 0 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ≠ ∅ ) | |
| 52 | 50 51 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ≠ ∅ ) |
| 53 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 54 | 38 53 | sstrdi | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
| 55 | fisupcl | ⊢ ( ( < Or ℝ* ∧ ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ∈ Fin ∧ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ≠ ∅ ∧ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) ) → sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) | |
| 56 | 40 46 52 54 55 | syl13anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) |
| 57 | 38 56 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ℝ ) |
| 58 | 21 57 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 𝐷 𝑔 ) ∈ ℝ ) |
| 59 | 58 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 ( 𝑓 𝐷 𝑔 ) ∈ ℝ ) |
| 60 | ffnov | ⊢ ( 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ ↔ ( 𝐷 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 ( 𝑓 𝐷 𝑔 ) ∈ ℝ ) ) | |
| 61 | 14 59 60 | sylanbrc | ⊢ ( 𝜑 → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ ) |
| 62 | ismet2 | ⊢ ( 𝐷 ∈ ( Met ‘ 𝐵 ) ↔ ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ∧ 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ ) ) | |
| 63 | 12 61 62 | sylanbrc | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝐵 ) ) |