This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a product metric. (Contributed by Mario Carneiro, 16-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressprdsds.y | ⊢ ( 𝜑 → 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) | |
| ressprdsds.h | ⊢ ( 𝜑 → 𝐻 = ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) | ||
| ressprdsds.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | ||
| ressprdsds.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | ||
| ressprdsds.e | ⊢ 𝐸 = ( dist ‘ 𝐻 ) | ||
| ressprdsds.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑈 ) | ||
| ressprdsds.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) | ||
| ressprdsds.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| ressprdsds.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ 𝑋 ) | ||
| ressprdsds.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐴 ∈ 𝑍 ) | ||
| Assertion | ressprdsds | ⊢ ( 𝜑 → 𝐸 = ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressprdsds.y | ⊢ ( 𝜑 → 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) | |
| 2 | ressprdsds.h | ⊢ ( 𝜑 → 𝐻 = ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) | |
| 3 | ressprdsds.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| 4 | ressprdsds.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | |
| 5 | ressprdsds.e | ⊢ 𝐸 = ( dist ‘ 𝐻 ) | |
| 6 | ressprdsds.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑈 ) | |
| 7 | ressprdsds.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) | |
| 8 | ressprdsds.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 9 | ressprdsds.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ 𝑋 ) | |
| 10 | ressprdsds.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐴 ∈ 𝑍 ) | |
| 11 | ovres | ⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑓 ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) 𝑔 ) = ( 𝑓 𝐷 𝑔 ) ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) 𝑔 ) = ( 𝑓 𝐷 𝑔 ) ) |
| 13 | eqid | ⊢ ( 𝑅 ↾s 𝐴 ) = ( 𝑅 ↾s 𝐴 ) | |
| 14 | eqid | ⊢ ( dist ‘ 𝑅 ) = ( dist ‘ 𝑅 ) | |
| 15 | 13 14 | ressds | ⊢ ( 𝐴 ∈ 𝑍 → ( dist ‘ 𝑅 ) = ( dist ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 16 | 10 15 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( dist ‘ 𝑅 ) = ( dist ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 17 | 16 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ↾s 𝐴 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 18 | 17 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ↾s 𝐴 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ↾s 𝐴 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 20 | 19 | rneqd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) ) = ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ↾s 𝐴 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 21 | 20 | uneq1d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) = ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ↾s 𝐴 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) |
| 22 | 21 | supeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ↾s 𝐴 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 23 | eqid | ⊢ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| 24 | eqid | ⊢ ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) = ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) | |
| 25 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑆 ∈ 𝑈 ) |
| 26 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑊 ) |
| 27 | 9 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 ) |
| 28 | 27 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 ) |
| 29 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 30 | 13 29 | ressbasss | ⊢ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝑅 ) |
| 31 | 30 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝑅 ) ) |
| 32 | 31 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝑅 ) ) |
| 33 | ss2ixp | ⊢ ( ∀ 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝑅 ) → X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ⊆ X 𝑥 ∈ 𝐼 ( Base ‘ 𝑅 ) ) | |
| 34 | 32 33 | syl | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ⊆ X 𝑥 ∈ 𝐼 ( Base ‘ 𝑅 ) ) |
| 35 | eqid | ⊢ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) = ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) | |
| 36 | eqid | ⊢ ( Base ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) = ( Base ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) | |
| 37 | ovex | ⊢ ( 𝑅 ↾s 𝐴 ) ∈ V | |
| 38 | 37 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐼 ( 𝑅 ↾s 𝐴 ) ∈ V |
| 39 | 38 | a1i | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝑅 ↾s 𝐴 ) ∈ V ) |
| 40 | eqid | ⊢ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) | |
| 41 | 35 36 7 8 39 40 | prdsbas3 | ⊢ ( 𝜑 → ( Base ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 42 | 23 24 6 8 27 29 | prdsbas3 | ⊢ ( 𝜑 → ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ 𝑅 ) ) |
| 43 | 34 41 42 | 3sstr4d | ⊢ ( 𝜑 → ( Base ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) ⊆ ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) ) |
| 44 | 2 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝐻 ) = ( Base ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) ) |
| 45 | 3 44 | eqtrid | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) ) |
| 46 | 1 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) ) |
| 47 | 43 45 46 | 3sstr4d | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ 𝑌 ) ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝐵 ⊆ ( Base ‘ 𝑌 ) ) |
| 49 | 46 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) ) |
| 50 | 48 49 | sseqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝐵 ⊆ ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) ) |
| 51 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 ∈ 𝐵 ) | |
| 52 | 50 51 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 ∈ ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) ) |
| 53 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 ∈ 𝐵 ) | |
| 54 | 50 53 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 ∈ ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) ) |
| 55 | eqid | ⊢ ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) = ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) | |
| 56 | 23 24 25 26 28 52 54 14 55 | prdsdsval2 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) 𝑔 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 57 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑇 ∈ 𝑉 ) |
| 58 | 38 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑅 ↾s 𝐴 ) ∈ V ) |
| 59 | 45 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝐵 = ( Base ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) ) |
| 60 | 51 59 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 ∈ ( Base ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) ) |
| 61 | 53 59 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 ∈ ( Base ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) ) |
| 62 | eqid | ⊢ ( dist ‘ ( 𝑅 ↾s 𝐴 ) ) = ( dist ‘ ( 𝑅 ↾s 𝐴 ) ) | |
| 63 | eqid | ⊢ ( dist ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) = ( dist ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) | |
| 64 | 35 36 57 26 58 60 61 62 63 | prdsdsval2 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 ( dist ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) 𝑔 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ↾s 𝐴 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 65 | 22 56 64 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) 𝑔 ) = ( 𝑓 ( dist ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) 𝑔 ) ) |
| 66 | 1 | fveq2d | ⊢ ( 𝜑 → ( dist ‘ 𝑌 ) = ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) ) |
| 67 | 4 66 | eqtrid | ⊢ ( 𝜑 → 𝐷 = ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) ) |
| 68 | 67 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 𝐷 𝑔 ) = ( 𝑓 ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) 𝑔 ) ) |
| 69 | 2 | fveq2d | ⊢ ( 𝜑 → ( dist ‘ 𝐻 ) = ( dist ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) ) |
| 70 | 5 69 | eqtrid | ⊢ ( 𝜑 → 𝐸 = ( dist ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) ) |
| 71 | 70 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 𝐸 𝑔 ) = ( 𝑓 ( dist ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) 𝑔 ) ) |
| 72 | 65 68 71 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 𝐷 𝑔 ) = ( 𝑓 𝐸 𝑔 ) ) |
| 73 | 12 72 | eqtr2d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 𝐸 𝑔 ) = ( 𝑓 ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) 𝑔 ) ) |
| 74 | 73 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 ( 𝑓 𝐸 𝑔 ) = ( 𝑓 ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) 𝑔 ) ) |
| 75 | 8 | mptexd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ∈ V ) |
| 76 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) | |
| 77 | 37 76 | dmmpti | ⊢ dom ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) = 𝐼 |
| 78 | 77 | a1i | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) = 𝐼 ) |
| 79 | 35 7 75 36 78 63 | prdsdsfn | ⊢ ( 𝜑 → ( dist ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) Fn ( ( Base ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) × ( Base ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) ) ) |
| 80 | 45 | sqxpeqd | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) × ( Base ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) ) ) |
| 81 | 70 80 | fneq12d | ⊢ ( 𝜑 → ( 𝐸 Fn ( 𝐵 × 𝐵 ) ↔ ( dist ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) Fn ( ( Base ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) × ( Base ‘ ( 𝑇 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ↾s 𝐴 ) ) ) ) ) ) ) |
| 82 | 79 81 | mpbird | ⊢ ( 𝜑 → 𝐸 Fn ( 𝐵 × 𝐵 ) ) |
| 83 | 8 | mptexd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ∈ V ) |
| 84 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 → dom ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) = 𝐼 ) | |
| 85 | 27 84 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) = 𝐼 ) |
| 86 | 23 6 83 24 85 55 | prdsdsfn | ⊢ ( 𝜑 → ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) Fn ( ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) × ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) ) ) |
| 87 | 46 | sqxpeqd | ⊢ ( 𝜑 → ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) = ( ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) × ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) ) ) |
| 88 | 67 87 | fneq12d | ⊢ ( 𝜑 → ( 𝐷 Fn ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ↔ ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) Fn ( ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) × ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) ) ) ) ) |
| 89 | 86 88 | mpbird | ⊢ ( 𝜑 → 𝐷 Fn ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) |
| 90 | xpss12 | ⊢ ( ( 𝐵 ⊆ ( Base ‘ 𝑌 ) ∧ 𝐵 ⊆ ( Base ‘ 𝑌 ) ) → ( 𝐵 × 𝐵 ) ⊆ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) | |
| 91 | 47 47 90 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) ⊆ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) |
| 92 | fnssres | ⊢ ( ( 𝐷 Fn ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ∧ ( 𝐵 × 𝐵 ) ⊆ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) → ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) ) | |
| 93 | 89 91 92 | syl2anc | ⊢ ( 𝜑 → ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) ) |
| 94 | eqfnov2 | ⊢ ( ( 𝐸 Fn ( 𝐵 × 𝐵 ) ∧ ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) ) → ( 𝐸 = ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) ↔ ∀ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 ( 𝑓 𝐸 𝑔 ) = ( 𝑓 ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) 𝑔 ) ) ) | |
| 95 | 82 93 94 | syl2anc | ⊢ ( 𝜑 → ( 𝐸 = ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) ↔ ∀ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 ( 𝑓 𝐸 𝑔 ) = ( 𝑓 ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) 𝑔 ) ) ) |
| 96 | 74 95 | mpbird | ⊢ ( 𝜑 → 𝐸 = ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) ) |