This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite mapping set is finite. (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mptfi | ⊢ ( 𝐴 ∈ Fin → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt | ⊢ Fun ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 2 | funfn | ⊢ ( Fun ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) | |
| 3 | 1 2 | mpbi | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 4 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 5 | 4 | dmmptss | ⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐴 |
| 6 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐴 ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ Fin ) | |
| 7 | 5 6 | mpan2 | ⊢ ( 𝐴 ∈ Fin → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ Fin ) |
| 8 | fnfi | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ Fin ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ Fin ) | |
| 9 | 3 7 8 | sylancr | ⊢ ( 𝐴 ∈ Fin → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ Fin ) |