This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ismet2 | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 2 | elfvex | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) → 𝑋 ∈ V ) |
| 4 | simpllr | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) | |
| 5 | simpr | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) | |
| 6 | simplrl | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 7 | 4 5 6 | fovcdmd | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) |
| 8 | simplrr | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) | |
| 9 | 4 5 8 | fovcdmd | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑦 ) ∈ ℝ ) |
| 10 | 7 9 | rexaddd | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) |
| 11 | 10 | breq2d | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ↔ ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 12 | 11 | ralbidva | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 13 | 12 | anbi2d | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 14 | 13 | 2ralbidva | ⊢ ( ( 𝑋 ∈ V ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 15 | simpr | ⊢ ( ( 𝑋 ∈ V ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) | |
| 16 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 17 | fss | ⊢ ( ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ∧ ℝ ⊆ ℝ* ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 18 | 15 16 17 | sylancl | ⊢ ( ( 𝑋 ∈ V ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
| 19 | 18 | biantrurd | ⊢ ( ( 𝑋 ∈ V ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |
| 20 | 14 19 | bitr3d | ⊢ ( ( 𝑋 ∈ V ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |
| 21 | 20 | pm5.32da | ⊢ ( 𝑋 ∈ V → ( ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ∧ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) ) |
| 22 | 21 | biancomd | ⊢ ( 𝑋 ∈ V → ( ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) ) ↔ ( ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ) ) |
| 23 | ismet | ⊢ ( 𝑋 ∈ V → ( 𝐷 ∈ ( Met ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) | |
| 24 | isxmet | ⊢ ( 𝑋 ∈ V → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) | |
| 25 | 24 | anbi1d | ⊢ ( 𝑋 ∈ V → ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ↔ ( ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ) ) |
| 26 | 22 23 25 | 3bitr4d | ⊢ ( 𝑋 ∈ V → ( 𝐷 ∈ ( Met ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ) ) |
| 27 | 1 3 26 | pm5.21nii | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ) |