This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a family of left modules is a left module. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdslmodd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdslmodd.s | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) | ||
| prdslmodd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| prdslmodd.rm | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ LMod ) | ||
| prdslmodd.rs | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) = 𝑆 ) | ||
| Assertion | prdslmodd | ⊢ ( 𝜑 → 𝑌 ∈ LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdslmodd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdslmodd.s | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) | |
| 3 | prdslmodd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 4 | prdslmodd.rm | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ LMod ) | |
| 5 | prdslmodd.rs | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) = 𝑆 ) | |
| 6 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) | |
| 7 | eqidd | ⊢ ( 𝜑 → ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) ) | |
| 8 | 4 3 | fexd | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 9 | 1 2 8 | prdssca | ⊢ ( 𝜑 → 𝑆 = ( Scalar ‘ 𝑌 ) ) |
| 10 | eqidd | ⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ 𝑌 ) ) | |
| 11 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) | |
| 12 | eqidd | ⊢ ( 𝜑 → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) ) | |
| 13 | eqidd | ⊢ ( 𝜑 → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) ) | |
| 14 | eqidd | ⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) ) | |
| 15 | lmodgrp | ⊢ ( 𝑎 ∈ LMod → 𝑎 ∈ Grp ) | |
| 16 | 15 | ssriv | ⊢ LMod ⊆ Grp |
| 17 | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ LMod ∧ LMod ⊆ Grp ) → 𝑅 : 𝐼 ⟶ Grp ) | |
| 18 | 4 16 17 | sylancl | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) |
| 19 | 1 3 2 18 | prdsgrpd | ⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
| 20 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 21 | eqid | ⊢ ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ 𝑌 ) | |
| 22 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 23 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ Ring ) |
| 24 | 3 | elexd | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ V ) |
| 26 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ LMod ) |
| 27 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) | |
| 28 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) | |
| 29 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) = 𝑆 ) |
| 30 | 1 20 21 22 23 25 26 27 28 29 | prdsvscacl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ∈ ( Base ‘ 𝑌 ) ) |
| 31 | 30 | 3impb | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ∈ ( Base ‘ 𝑌 ) ) |
| 32 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ LMod ) |
| 33 | 32 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ LMod ) |
| 34 | simplr1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) | |
| 35 | 5 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( Base ‘ 𝑆 ) ) |
| 36 | 35 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( Base ‘ 𝑆 ) ) |
| 37 | 34 36 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 38 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑆 ∈ Ring ) |
| 39 | 24 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝐼 ∈ V ) |
| 40 | 4 | ffnd | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 41 | 40 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 42 | simplr2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) | |
| 43 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) | |
| 44 | 1 20 38 39 41 42 43 | prdsbasprj | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑏 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 45 | simplr3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑐 ∈ ( Base ‘ 𝑌 ) ) | |
| 46 | 1 20 38 39 41 45 43 | prdsbasprj | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑐 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 47 | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) | |
| 48 | eqid | ⊢ ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) | |
| 49 | eqid | ⊢ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) = ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) | |
| 50 | eqid | ⊢ ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) = ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) | |
| 51 | eqid | ⊢ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) | |
| 52 | 47 48 49 50 51 | lmodvsdi | ⊢ ( ( ( 𝑅 ‘ 𝑦 ) ∈ LMod ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ∧ ( 𝑏 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ∧ ( 𝑐 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) = ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 53 | 33 37 44 46 52 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) = ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 54 | eqid | ⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) | |
| 55 | 1 20 38 39 41 42 45 54 43 | prdsplusgfval | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) = ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
| 56 | 55 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 57 | 1 20 21 22 38 39 41 34 42 43 | prdsvscafval | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ) |
| 58 | 1 20 21 22 38 39 41 34 45 43 | prdsvscafval | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
| 59 | 57 58 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) = ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 60 | 53 56 59 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) = ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) |
| 61 | 60 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
| 62 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ Ring ) |
| 63 | 24 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ V ) |
| 64 | 40 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 Fn 𝐼 ) |
| 65 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) | |
| 66 | 19 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑌 ∈ Grp ) |
| 67 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) | |
| 68 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑐 ∈ ( Base ‘ 𝑌 ) ) | |
| 69 | 20 54 | grpcl | ⊢ ( ( 𝑌 ∈ Grp ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
| 70 | 66 67 68 69 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
| 71 | 1 20 21 22 62 63 64 65 70 | prdsvscaval | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
| 72 | 30 | 3adantr3 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ∈ ( Base ‘ 𝑌 ) ) |
| 73 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ Ring ) |
| 74 | 24 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ V ) |
| 75 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ LMod ) |
| 76 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) | |
| 77 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑐 ∈ ( Base ‘ 𝑌 ) ) | |
| 78 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) = 𝑆 ) |
| 79 | 1 20 21 22 73 74 75 76 77 78 | prdsvscacl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
| 80 | 79 | 3adantr2 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
| 81 | 1 20 62 63 64 72 80 54 | prdsplusgval | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ( +g ‘ 𝑌 ) ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
| 82 | 61 71 81 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ) = ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ( +g ‘ 𝑌 ) ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ) ) |
| 83 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑆 ∈ Ring ) |
| 84 | 24 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝐼 ∈ V ) |
| 85 | 40 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 86 | simplr1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) | |
| 87 | simplr3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑐 ∈ ( Base ‘ 𝑌 ) ) | |
| 88 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) | |
| 89 | 1 20 21 22 83 84 85 86 87 88 | prdsvscafval | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
| 90 | simplr2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) | |
| 91 | 1 20 21 22 83 84 85 90 87 88 | prdsvscafval | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) = ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
| 92 | 89 91 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) = ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 93 | 32 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ LMod ) |
| 94 | 35 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( Base ‘ 𝑆 ) ) |
| 95 | 86 94 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 96 | 90 94 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑏 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 97 | 1 20 83 84 85 87 88 | prdsbasprj | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑐 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 98 | eqid | ⊢ ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) | |
| 99 | 47 48 49 50 51 98 | lmodvsdir | ⊢ ( ( ( 𝑅 ‘ 𝑦 ) ∈ LMod ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ∧ 𝑏 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ∧ ( 𝑐 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) → ( ( 𝑎 ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 100 | 93 95 96 97 99 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 101 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) = 𝑆 ) |
| 102 | 101 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( +g ‘ 𝑆 ) ) |
| 103 | 102 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) |
| 104 | 103 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
| 105 | 92 100 104 | 3eqtr2rd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) |
| 106 | 105 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
| 107 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ Ring ) |
| 108 | 24 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ V ) |
| 109 | 40 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 Fn 𝐼 ) |
| 110 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) | |
| 111 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) | |
| 112 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 113 | 22 112 | ringacl | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
| 114 | 107 110 111 113 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
| 115 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑐 ∈ ( Base ‘ 𝑌 ) ) | |
| 116 | 1 20 21 22 107 108 109 114 115 | prdsvscaval | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ 𝑌 ) 𝑐 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 117 | 79 | 3adantr2 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
| 118 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ LMod ) |
| 119 | 1 20 21 22 107 108 118 111 115 101 | prdsvscacl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
| 120 | 1 20 107 108 109 117 119 54 | prdsplusgval | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ( +g ‘ 𝑌 ) ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
| 121 | 106 116 120 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ 𝑌 ) 𝑐 ) = ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ( +g ‘ 𝑌 ) ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ) ) |
| 122 | 91 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 123 | eqid | ⊢ ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) | |
| 124 | 47 49 50 51 123 | lmodvsass | ⊢ ( ( ( 𝑅 ‘ 𝑦 ) ∈ LMod ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ∧ 𝑏 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ∧ ( 𝑐 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) → ( ( 𝑎 ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 125 | 93 95 96 97 124 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 126 | 101 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( .r ‘ 𝑆 ) ) |
| 127 | 126 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) = ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ) |
| 128 | 127 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
| 129 | 122 125 128 | 3eqtr2rd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) |
| 130 | 129 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
| 131 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 132 | 22 131 | ringcl | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
| 133 | 107 110 111 132 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
| 134 | 1 20 21 22 107 108 109 133 115 | prdsvscaval | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ 𝑌 ) 𝑐 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 135 | 1 20 21 22 107 108 109 110 119 | prdsvscaval | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
| 136 | 130 134 135 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ 𝑌 ) 𝑐 ) = ( 𝑎 ( ·𝑠 ‘ 𝑌 ) ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ) ) |
| 137 | 5 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( 1r ‘ 𝑆 ) ) |
| 138 | 137 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( 1r ‘ 𝑆 ) ) |
| 139 | 138 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) = ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) ) |
| 140 | 32 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ LMod ) |
| 141 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑆 ∈ Ring ) |
| 142 | 24 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝐼 ∈ V ) |
| 143 | 40 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 144 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) | |
| 145 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) | |
| 146 | 1 20 141 142 143 144 145 | prdsbasprj | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 147 | eqid | ⊢ ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) | |
| 148 | 47 49 50 147 | lmodvs1 | ⊢ ( ( ( 𝑅 ‘ 𝑦 ) ∈ LMod ∧ ( 𝑎 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) → ( ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) = ( 𝑎 ‘ 𝑦 ) ) |
| 149 | 140 146 148 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) = ( 𝑎 ‘ 𝑦 ) ) |
| 150 | 139 149 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) = ( 𝑎 ‘ 𝑦 ) ) |
| 151 | 150 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑦 ∈ 𝐼 ↦ ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑦 ) ) ) |
| 152 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑆 ∈ Ring ) |
| 153 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝐼 ∈ V ) |
| 154 | 40 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑅 Fn 𝐼 ) |
| 155 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 156 | 22 155 | ringidcl | ⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 157 | 2 156 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 158 | 157 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 159 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) | |
| 160 | 1 20 21 22 152 153 154 158 159 | prdsvscaval | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ 𝑌 ) 𝑎 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) ) ) |
| 161 | 1 20 152 153 154 159 | prdsbasfn | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑎 Fn 𝐼 ) |
| 162 | dffn5 | ⊢ ( 𝑎 Fn 𝐼 ↔ 𝑎 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑦 ) ) ) | |
| 163 | 161 162 | sylib | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑎 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑦 ) ) ) |
| 164 | 151 160 163 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ 𝑌 ) 𝑎 ) = 𝑎 ) |
| 165 | 6 7 9 10 11 12 13 14 2 19 31 82 121 136 164 | islmodd | ⊢ ( 𝜑 → 𝑌 ∈ LMod ) |