This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each point in a structure product restricts on each coordinate to the relevant base set. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsbasmpt.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsbasmpt.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsbasmpt.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsbasmpt.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | ||
| prdsbasmpt.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝐵 ) | ||
| prdsbasprj.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) | ||
| Assertion | prdsbasprj | ⊢ ( 𝜑 → ( 𝑇 ‘ 𝐽 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsbasmpt.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsbasmpt.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdsbasmpt.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | prdsbasmpt.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | |
| 6 | prdsbasmpt.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝐵 ) | |
| 7 | prdsbasprj.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) | |
| 8 | fveq2 | ⊢ ( 𝑥 = 𝐽 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝐽 ) ) | |
| 9 | 2fveq3 | ⊢ ( 𝑥 = 𝐽 → ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) = ( Base ‘ ( 𝑅 ‘ 𝐽 ) ) ) | |
| 10 | 8 9 | eleq12d | ⊢ ( 𝑥 = 𝐽 → ( ( 𝑇 ‘ 𝑥 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↔ ( 𝑇 ‘ 𝐽 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝐽 ) ) ) ) |
| 11 | 1 2 3 4 5 | prdsbas2 | ⊢ ( 𝜑 → 𝐵 = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 12 | 6 11 | eleqtrd | ⊢ ( 𝜑 → 𝑇 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 13 | elixp2 | ⊢ ( 𝑇 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↔ ( 𝑇 ∈ V ∧ 𝑇 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑇 ‘ 𝑥 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | |
| 14 | 13 | simp3bi | ⊢ ( 𝑇 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑇 ‘ 𝑥 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 15 | 12 14 | syl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝑇 ‘ 𝑥 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 16 | 10 15 7 | rspcdva | ⊢ ( 𝜑 → ( 𝑇 ‘ 𝐽 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝐽 ) ) ) |