This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar ring of a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbas.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| prdsbas.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsbas.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | ||
| Assertion | prdssca | ⊢ ( 𝜑 → 𝑆 = ( Scalar ‘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbas.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsbas.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 3 | prdsbas.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 5 | eqidd | ⊢ ( 𝜑 → dom 𝑅 = dom 𝑅 ) | |
| 6 | eqidd | ⊢ ( 𝜑 → X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) = X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) | |
| 7 | eqidd | ⊢ ( 𝜑 → ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) | |
| 8 | eqidd | ⊢ ( 𝜑 → ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) | |
| 9 | eqidd | ⊢ ( 𝜑 → ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) | |
| 10 | eqidd | ⊢ ( 𝜑 → ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | |
| 11 | eqidd | ⊢ ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) | |
| 12 | eqidd | ⊢ ( 𝜑 → { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ dom 𝑅 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ dom 𝑅 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) | |
| 13 | eqidd | ⊢ ( 𝜑 → ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) = ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) | |
| 14 | eqidd | ⊢ ( 𝜑 → ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ dom 𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ dom 𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) | |
| 15 | eqidd | ⊢ ( 𝜑 → ( 𝑎 ∈ ( X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) × X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) , 𝑐 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ dom 𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ dom 𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) = ( 𝑎 ∈ ( X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) × X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) , 𝑐 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ dom 𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ dom 𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) ) | |
| 16 | 1 4 5 6 7 8 9 10 11 12 13 14 15 2 3 | prdsval | ⊢ ( 𝜑 → 𝑃 = ( ( { 〈 ( Base ‘ ndx ) , X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ dom 𝑅 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ dom 𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) × X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) , 𝑐 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ dom 𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ dom 𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) ) |
| 17 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 18 | scaid | ⊢ Scalar = Slot ( Scalar ‘ ndx ) | |
| 19 | snsstp1 | ⊢ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 } ⊆ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } | |
| 20 | ssun2 | ⊢ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) | |
| 21 | 19 20 | sstri | ⊢ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) |
| 22 | ssun1 | ⊢ ( { 〈 ( Base ‘ ndx ) , X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ⊆ ( ( { 〈 ( Base ‘ ndx ) , X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ dom 𝑅 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ dom 𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) × X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) , 𝑐 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ dom 𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ dom 𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) | |
| 23 | 21 22 | sstri | ⊢ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 } ⊆ ( ( { 〈 ( Base ‘ ndx ) , X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ dom 𝑅 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ dom 𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) × X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) , 𝑐 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ dom 𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ dom 𝑅 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑅 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) |
| 24 | 16 17 18 2 23 | prdsbaslem | ⊢ ( 𝜑 → ( Scalar ‘ 𝑃 ) = 𝑆 ) |
| 25 | 24 | eqcomd | ⊢ ( 𝜑 → 𝑆 = ( Scalar ‘ 𝑃 ) ) |