This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Pointwise scalar multiplication is closed in products of modules. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsvscacl.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsvscacl.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsvscacl.t | ⊢ · = ( ·𝑠 ‘ 𝑌 ) | ||
| prdsvscacl.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| prdsvscacl.s | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) | ||
| prdsvscacl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsvscacl.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ LMod ) | ||
| prdsvscacl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐾 ) | ||
| prdsvscacl.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | ||
| prdsvscacl.sr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) = 𝑆 ) | ||
| Assertion | prdsvscacl | ⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsvscacl.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsvscacl.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsvscacl.t | ⊢ · = ( ·𝑠 ‘ 𝑌 ) | |
| 4 | prdsvscacl.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 5 | prdsvscacl.s | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) | |
| 6 | prdsvscacl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 7 | prdsvscacl.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ LMod ) | |
| 8 | prdsvscacl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐾 ) | |
| 9 | prdsvscacl.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | |
| 10 | prdsvscacl.sr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) = 𝑆 ) | |
| 11 | 7 | ffnd | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 12 | 1 2 3 4 5 6 11 8 9 | prdsvscaval | ⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 13 | 7 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑥 ) ∈ LMod ) |
| 14 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐹 ∈ 𝐾 ) |
| 15 | 10 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( Base ‘ 𝑆 ) ) |
| 16 | 15 4 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) = 𝐾 ) |
| 17 | 14 16 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐹 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 18 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ Ring ) |
| 19 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 20 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 21 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐺 ∈ 𝐵 ) |
| 22 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) | |
| 23 | 1 2 18 19 20 21 22 | prdsbasprj | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 24 | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) | |
| 25 | eqid | ⊢ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) = ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) | |
| 26 | eqid | ⊢ ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) = ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) | |
| 27 | eqid | ⊢ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) | |
| 28 | 24 25 26 27 | lmodvscl | ⊢ ( ( ( 𝑅 ‘ 𝑥 ) ∈ LMod ∧ 𝐹 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) → ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 29 | 13 17 23 28 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 30 | 29 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 31 | 1 2 5 6 11 | prdsbasmpt | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 32 | 30 31 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ∈ 𝐵 ) |
| 33 | 12 32 | eqeltrd | ⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) ∈ 𝐵 ) |