This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication in a structure product is pointwise. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsbasmpt.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsvscaval.t | ⊢ · = ( ·𝑠 ‘ 𝑌 ) | ||
| prdsvscaval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| prdsvscaval.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsvscaval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsvscaval.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | ||
| prdsvscaval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐾 ) | ||
| prdsvscaval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | ||
| Assertion | prdsvscaval | ⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsbasmpt.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsvscaval.t | ⊢ · = ( ·𝑠 ‘ 𝑌 ) | |
| 4 | prdsvscaval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 5 | prdsvscaval.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 6 | prdsvscaval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 7 | prdsvscaval.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | |
| 8 | prdsvscaval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐾 ) | |
| 9 | prdsvscaval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | |
| 10 | fnex | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑊 ) → 𝑅 ∈ V ) | |
| 11 | 7 6 10 | syl2anc | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 12 | 7 | fndmd | ⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) |
| 13 | 1 5 11 2 12 4 3 | prdsvsca | ⊢ ( 𝜑 → · = ( 𝑦 ∈ 𝐾 , 𝑧 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑧 ‘ 𝑥 ) ) ) ) ) |
| 14 | id | ⊢ ( 𝑦 = 𝐹 → 𝑦 = 𝐹 ) | |
| 15 | fveq1 | ⊢ ( 𝑧 = 𝐺 → ( 𝑧 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 16 | 14 15 | oveqan12d | ⊢ ( ( 𝑦 = 𝐹 ∧ 𝑧 = 𝐺 ) → ( 𝑦 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑧 ‘ 𝑥 ) ) = ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝐹 ∧ 𝑧 = 𝐺 ) ) → ( 𝑦 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑧 ‘ 𝑥 ) ) = ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) |
| 18 | 17 | mpteq2dv | ⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝐹 ∧ 𝑧 = 𝐺 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑧 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 19 | 6 | mptexd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) |
| 20 | 13 18 8 9 19 | ovmpod | ⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ) |