This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication of a single coordinate in a structure product. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsbasmpt.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsvscaval.t | ⊢ · = ( ·𝑠 ‘ 𝑌 ) | ||
| prdsvscaval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| prdsvscaval.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsvscaval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsvscaval.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | ||
| prdsvscaval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐾 ) | ||
| prdsvscaval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | ||
| prdsvscafval.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) | ||
| Assertion | prdsvscafval | ⊢ ( 𝜑 → ( ( 𝐹 · 𝐺 ) ‘ 𝐽 ) = ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsbasmpt.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsvscaval.t | ⊢ · = ( ·𝑠 ‘ 𝑌 ) | |
| 4 | prdsvscaval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 5 | prdsvscaval.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 6 | prdsvscaval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 7 | prdsvscaval.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | |
| 8 | prdsvscaval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐾 ) | |
| 9 | prdsvscaval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | |
| 10 | prdsvscafval.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) | |
| 11 | 1 2 3 4 5 6 7 8 9 | prdsvscaval | ⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 12 | 2fveq3 | ⊢ ( 𝑥 = 𝐽 → ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) = ( ·𝑠 ‘ ( 𝑅 ‘ 𝐽 ) ) ) | |
| 13 | eqidd | ⊢ ( 𝑥 = 𝐽 → 𝐹 = 𝐹 ) | |
| 14 | fveq2 | ⊢ ( 𝑥 = 𝐽 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝐽 ) ) | |
| 15 | 12 13 14 | oveq123d | ⊢ ( 𝑥 = 𝐽 → ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) = ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) ) ) |
| 16 | 15 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐽 ) → ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) = ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) ) ) |
| 17 | ovexd | ⊢ ( 𝜑 → ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) ) ∈ V ) | |
| 18 | 11 16 10 17 | fvmptd | ⊢ ( 𝜑 → ( ( 𝐹 · 𝐺 ) ‘ 𝐽 ) = ( 𝐹 ( ·𝑠 ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) ) ) |