This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: General value of mapping a point under a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pmtrfval.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| Assertion | pmtrfv | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑍 ∈ 𝐷 ) → ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑍 ) = if ( 𝑍 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrfval.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| 2 | 1 | pmtrval | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
| 3 | 2 | fveq1d | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑍 ) = ( ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ‘ 𝑍 ) ) |
| 4 | 3 | adantr | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑍 ∈ 𝐷 ) → ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑍 ) = ( ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ‘ 𝑍 ) ) |
| 5 | eqid | ⊢ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) | |
| 6 | eleq1 | ⊢ ( 𝑧 = 𝑍 → ( 𝑧 ∈ 𝑃 ↔ 𝑍 ∈ 𝑃 ) ) | |
| 7 | sneq | ⊢ ( 𝑧 = 𝑍 → { 𝑧 } = { 𝑍 } ) | |
| 8 | 7 | difeq2d | ⊢ ( 𝑧 = 𝑍 → ( 𝑃 ∖ { 𝑧 } ) = ( 𝑃 ∖ { 𝑍 } ) ) |
| 9 | 8 | unieqd | ⊢ ( 𝑧 = 𝑍 → ∪ ( 𝑃 ∖ { 𝑧 } ) = ∪ ( 𝑃 ∖ { 𝑍 } ) ) |
| 10 | id | ⊢ ( 𝑧 = 𝑍 → 𝑧 = 𝑍 ) | |
| 11 | 6 9 10 | ifbieq12d | ⊢ ( 𝑧 = 𝑍 → if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) = if ( 𝑍 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ) |
| 12 | simpr | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑍 ∈ 𝐷 ) → 𝑍 ∈ 𝐷 ) | |
| 13 | simpl3 | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑍 ∈ 𝐷 ) → 𝑃 ≈ 2o ) | |
| 14 | relen | ⊢ Rel ≈ | |
| 15 | 14 | brrelex1i | ⊢ ( 𝑃 ≈ 2o → 𝑃 ∈ V ) |
| 16 | difexg | ⊢ ( 𝑃 ∈ V → ( 𝑃 ∖ { 𝑍 } ) ∈ V ) | |
| 17 | uniexg | ⊢ ( ( 𝑃 ∖ { 𝑍 } ) ∈ V → ∪ ( 𝑃 ∖ { 𝑍 } ) ∈ V ) | |
| 18 | 13 15 16 17 | 4syl | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑍 ∈ 𝐷 ) → ∪ ( 𝑃 ∖ { 𝑍 } ) ∈ V ) |
| 19 | ifexg | ⊢ ( ( ∪ ( 𝑃 ∖ { 𝑍 } ) ∈ V ∧ 𝑍 ∈ 𝐷 ) → if ( 𝑍 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ∈ V ) | |
| 20 | 18 19 | sylancom | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑍 ∈ 𝐷 ) → if ( 𝑍 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ∈ V ) |
| 21 | 5 11 12 20 | fvmptd3 | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑍 ∈ 𝐷 ) → ( ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ‘ 𝑍 ) = if ( 𝑍 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ) |
| 22 | 4 21 | eqtrd | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑍 ∈ 𝐷 ) → ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑍 ) = if ( 𝑍 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ) |