This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pmtrfval.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| Assertion | pmtrf | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) : 𝐷 ⟶ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrfval.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| 2 | 1 | pmtrval | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
| 3 | simpll2 | ⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝑃 ) → 𝑃 ⊆ 𝐷 ) | |
| 4 | 1onn | ⊢ 1o ∈ ω | |
| 5 | simpll3 | ⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝑃 ) → 𝑃 ≈ 2o ) | |
| 6 | df-2o | ⊢ 2o = suc 1o | |
| 7 | 5 6 | breqtrdi | ⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝑃 ) → 𝑃 ≈ suc 1o ) |
| 8 | simpr | ⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝑃 ) → 𝑧 ∈ 𝑃 ) | |
| 9 | dif1ennn | ⊢ ( ( 1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑧 ∈ 𝑃 ) → ( 𝑃 ∖ { 𝑧 } ) ≈ 1o ) | |
| 10 | 4 7 8 9 | mp3an2i | ⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝑃 ) → ( 𝑃 ∖ { 𝑧 } ) ≈ 1o ) |
| 11 | en1uniel | ⊢ ( ( 𝑃 ∖ { 𝑧 } ) ≈ 1o → ∪ ( 𝑃 ∖ { 𝑧 } ) ∈ ( 𝑃 ∖ { 𝑧 } ) ) | |
| 12 | eldifi | ⊢ ( ∪ ( 𝑃 ∖ { 𝑧 } ) ∈ ( 𝑃 ∖ { 𝑧 } ) → ∪ ( 𝑃 ∖ { 𝑧 } ) ∈ 𝑃 ) | |
| 13 | 10 11 12 | 3syl | ⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝑃 ) → ∪ ( 𝑃 ∖ { 𝑧 } ) ∈ 𝑃 ) |
| 14 | 3 13 | sseldd | ⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝑃 ) → ∪ ( 𝑃 ∖ { 𝑧 } ) ∈ 𝐷 ) |
| 15 | simplr | ⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) ∧ ¬ 𝑧 ∈ 𝑃 ) → 𝑧 ∈ 𝐷 ) | |
| 16 | 14 15 | ifclda | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) → if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ∈ 𝐷 ) |
| 17 | 2 16 | fmpt3d | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) : 𝐷 ⟶ 𝐷 ) |