This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the class of non-fixed points of a function. (Contributed by Stefan O'Rear, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fndifnfp | ⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∖ I ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn2 | ⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 : 𝐴 ⟶ V ) | |
| 2 | fssxp | ⊢ ( 𝐹 : 𝐴 ⟶ V → 𝐹 ⊆ ( 𝐴 × V ) ) | |
| 3 | 1 2 | sylbi | ⊢ ( 𝐹 Fn 𝐴 → 𝐹 ⊆ ( 𝐴 × V ) ) |
| 4 | ssdif0 | ⊢ ( 𝐹 ⊆ ( 𝐴 × V ) ↔ ( 𝐹 ∖ ( 𝐴 × V ) ) = ∅ ) | |
| 5 | 3 4 | sylib | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ∖ ( 𝐴 × V ) ) = ∅ ) |
| 6 | 5 | uneq2d | ⊢ ( 𝐹 Fn 𝐴 → ( ( 𝐹 ∖ I ) ∪ ( 𝐹 ∖ ( 𝐴 × V ) ) ) = ( ( 𝐹 ∖ I ) ∪ ∅ ) ) |
| 7 | un0 | ⊢ ( ( 𝐹 ∖ I ) ∪ ∅ ) = ( 𝐹 ∖ I ) | |
| 8 | 6 7 | eqtr2di | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ∖ I ) = ( ( 𝐹 ∖ I ) ∪ ( 𝐹 ∖ ( 𝐴 × V ) ) ) ) |
| 9 | df-res | ⊢ ( I ↾ 𝐴 ) = ( I ∩ ( 𝐴 × V ) ) | |
| 10 | 9 | difeq2i | ⊢ ( 𝐹 ∖ ( I ↾ 𝐴 ) ) = ( 𝐹 ∖ ( I ∩ ( 𝐴 × V ) ) ) |
| 11 | difindi | ⊢ ( 𝐹 ∖ ( I ∩ ( 𝐴 × V ) ) ) = ( ( 𝐹 ∖ I ) ∪ ( 𝐹 ∖ ( 𝐴 × V ) ) ) | |
| 12 | 10 11 | eqtri | ⊢ ( 𝐹 ∖ ( I ↾ 𝐴 ) ) = ( ( 𝐹 ∖ I ) ∪ ( 𝐹 ∖ ( 𝐴 × V ) ) ) |
| 13 | 8 12 | eqtr4di | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ∖ I ) = ( 𝐹 ∖ ( I ↾ 𝐴 ) ) ) |
| 14 | 13 | dmeqd | ⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∖ I ) = dom ( 𝐹 ∖ ( I ↾ 𝐴 ) ) ) |
| 15 | fnresi | ⊢ ( I ↾ 𝐴 ) Fn 𝐴 | |
| 16 | fndmdif | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴 ) Fn 𝐴 ) → dom ( 𝐹 ∖ ( I ↾ 𝐴 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } ) | |
| 17 | 15 16 | mpan2 | ⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∖ ( I ↾ 𝐴 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } ) |
| 18 | fvresi | ⊢ ( 𝑥 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) | |
| 19 | 18 | neeq2d | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ≠ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ) ) |
| 20 | 19 | rabbiia | ⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } |
| 21 | 20 | a1i | ⊢ ( 𝐹 Fn 𝐴 → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) |
| 22 | 14 17 21 | 3eqtrd | ⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∖ I ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) |