This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1eu.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| pj1eu.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| pj1eu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| pj1eu.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| pj1eu.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| pj1eu.3 | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| pj1eu.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | ||
| pj1eu.5 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | ||
| pj1f.p | ⊢ 𝑃 = ( proj1 ‘ 𝐺 ) | ||
| Assertion | pj1ghm | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1eu.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| 2 | pj1eu.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 3 | pj1eu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | pj1eu.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 5 | pj1eu.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 6 | pj1eu.3 | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 7 | pj1eu.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | |
| 8 | pj1eu.5 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | |
| 9 | pj1f.p | ⊢ 𝑃 = ( proj1 ‘ 𝐺 ) | |
| 10 | eqid | ⊢ ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) = ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 12 | ovex | ⊢ ( 𝑇 ⊕ 𝑈 ) ∈ V | |
| 13 | eqid | ⊢ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) = ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) | |
| 14 | 13 1 | ressplusg | ⊢ ( ( 𝑇 ⊕ 𝑈 ) ∈ V → + = ( +g ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 15 | 12 14 | ax-mp | ⊢ + = ( +g ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) |
| 16 | 2 4 | lsmsubg | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 17 | 5 6 8 16 | syl3anc | ⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 18 | 13 | subggrp | ⊢ ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ∈ Grp ) |
| 19 | 17 18 | syl | ⊢ ( 𝜑 → ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ∈ Grp ) |
| 20 | subgrcl | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 21 | 5 20 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 22 | 1 2 3 4 5 6 7 8 9 | pj1f | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑇 ) |
| 23 | 11 | subgss | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 24 | 5 23 | syl | ⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 25 | 22 24 | fssd | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 26 | 13 | subgbas | ⊢ ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑇 ⊕ 𝑈 ) = ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 27 | 17 26 | syl | ⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) = ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 28 | 27 | feq2d | ⊢ ( 𝜑 → ( ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ ( Base ‘ 𝐺 ) ↔ ( 𝑇 𝑃 𝑈 ) : ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ⟶ ( Base ‘ 𝐺 ) ) ) |
| 29 | 25 28 | mpbid | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ⟶ ( Base ‘ 𝐺 ) ) |
| 30 | 27 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) ) |
| 31 | 27 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) ) |
| 32 | 30 31 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ↔ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) ) ) |
| 33 | 32 | biimpar | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) ) → ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 34 | 1 2 3 4 5 6 7 8 9 | pj1id | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ) → 𝑥 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ) ) |
| 35 | 34 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑥 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ) ) |
| 36 | 1 2 3 4 5 6 7 8 9 | pj1id | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) → 𝑦 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) |
| 37 | 36 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑦 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) |
| 38 | 35 37 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 + 𝑦 ) = ( ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ) + ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 39 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 40 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 41 | 39 20 40 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝐺 ∈ Mnd ) |
| 42 | 39 23 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 43 | simpl | ⊢ ( ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) → 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ) | |
| 44 | ffvelcdm | ⊢ ( ( ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑇 ∧ 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) ∈ 𝑇 ) | |
| 45 | 22 43 44 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) ∈ 𝑇 ) |
| 46 | 42 45 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) |
| 47 | simpr | ⊢ ( ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) → 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) | |
| 48 | ffvelcdm | ⊢ ( ( ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑇 ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ 𝑇 ) | |
| 49 | 22 47 48 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ 𝑇 ) |
| 50 | 42 49 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 51 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 52 | 11 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 53 | 51 52 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 54 | 1 2 3 4 5 6 7 8 9 | pj2f | ⊢ ( 𝜑 → ( 𝑈 𝑃 𝑇 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑈 ) |
| 55 | ffvelcdm | ⊢ ( ( ( 𝑈 𝑃 𝑇 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑈 ∧ 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ∈ 𝑈 ) | |
| 56 | 54 43 55 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ∈ 𝑈 ) |
| 57 | 53 56 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) |
| 58 | ffvelcdm | ⊢ ( ( ( 𝑈 𝑃 𝑇 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑈 ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ 𝑈 ) | |
| 59 | 54 47 58 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ 𝑈 ) |
| 60 | 53 59 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 61 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
| 62 | 61 49 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ ( 𝑍 ‘ 𝑈 ) ) |
| 63 | 1 4 | cntzi | ⊢ ( ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ ( 𝑍 ‘ 𝑈 ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ∈ 𝑈 ) → ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ) = ( ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) |
| 64 | 62 56 63 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ) = ( ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) |
| 65 | 11 1 41 46 50 57 60 64 | mnd4g | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) + ( ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) = ( ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ) + ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 66 | 38 65 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 + 𝑦 ) = ( ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) + ( ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 67 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
| 68 | 1 | subgcl | ⊢ ( ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( 𝑥 + 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 69 | 68 | 3expb | ⊢ ( ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 70 | 17 69 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 71 | 1 | subgcl | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) ∈ 𝑇 ∧ ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ 𝑇 ) → ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∈ 𝑇 ) |
| 72 | 39 45 49 71 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∈ 𝑇 ) |
| 73 | 1 | subgcl | ⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ∈ 𝑈 ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ 𝑈 ) → ( ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ∈ 𝑈 ) |
| 74 | 51 56 59 73 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ∈ 𝑈 ) |
| 75 | 1 2 3 4 39 51 67 61 9 70 72 74 | pj1eq | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑥 + 𝑦 ) = ( ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) + ( ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) ) |
| 76 | 66 75 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 77 | 76 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) |
| 78 | 33 77 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) |
| 79 | 10 11 15 1 19 21 29 78 | isghmd | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom 𝐺 ) ) |