This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1eu.a | |- .+ = ( +g ` G ) |
|
| pj1eu.s | |- .(+) = ( LSSum ` G ) |
||
| pj1eu.o | |- .0. = ( 0g ` G ) |
||
| pj1eu.z | |- Z = ( Cntz ` G ) |
||
| pj1eu.2 | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| pj1eu.3 | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| pj1eu.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
||
| pj1eu.5 | |- ( ph -> T C_ ( Z ` U ) ) |
||
| pj1f.p | |- P = ( proj1 ` G ) |
||
| Assertion | pj1ghm | |- ( ph -> ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1eu.a | |- .+ = ( +g ` G ) |
|
| 2 | pj1eu.s | |- .(+) = ( LSSum ` G ) |
|
| 3 | pj1eu.o | |- .0. = ( 0g ` G ) |
|
| 4 | pj1eu.z | |- Z = ( Cntz ` G ) |
|
| 5 | pj1eu.2 | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 6 | pj1eu.3 | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 7 | pj1eu.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
|
| 8 | pj1eu.5 | |- ( ph -> T C_ ( Z ` U ) ) |
|
| 9 | pj1f.p | |- P = ( proj1 ` G ) |
|
| 10 | eqid | |- ( Base ` ( G |`s ( T .(+) U ) ) ) = ( Base ` ( G |`s ( T .(+) U ) ) ) |
|
| 11 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 12 | ovex | |- ( T .(+) U ) e. _V |
|
| 13 | eqid | |- ( G |`s ( T .(+) U ) ) = ( G |`s ( T .(+) U ) ) |
|
| 14 | 13 1 | ressplusg | |- ( ( T .(+) U ) e. _V -> .+ = ( +g ` ( G |`s ( T .(+) U ) ) ) ) |
| 15 | 12 14 | ax-mp | |- .+ = ( +g ` ( G |`s ( T .(+) U ) ) ) |
| 16 | 2 4 | lsmsubg | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) e. ( SubGrp ` G ) ) |
| 17 | 5 6 8 16 | syl3anc | |- ( ph -> ( T .(+) U ) e. ( SubGrp ` G ) ) |
| 18 | 13 | subggrp | |- ( ( T .(+) U ) e. ( SubGrp ` G ) -> ( G |`s ( T .(+) U ) ) e. Grp ) |
| 19 | 17 18 | syl | |- ( ph -> ( G |`s ( T .(+) U ) ) e. Grp ) |
| 20 | subgrcl | |- ( T e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 21 | 5 20 | syl | |- ( ph -> G e. Grp ) |
| 22 | 1 2 3 4 5 6 7 8 9 | pj1f | |- ( ph -> ( T P U ) : ( T .(+) U ) --> T ) |
| 23 | 11 | subgss | |- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
| 24 | 5 23 | syl | |- ( ph -> T C_ ( Base ` G ) ) |
| 25 | 22 24 | fssd | |- ( ph -> ( T P U ) : ( T .(+) U ) --> ( Base ` G ) ) |
| 26 | 13 | subgbas | |- ( ( T .(+) U ) e. ( SubGrp ` G ) -> ( T .(+) U ) = ( Base ` ( G |`s ( T .(+) U ) ) ) ) |
| 27 | 17 26 | syl | |- ( ph -> ( T .(+) U ) = ( Base ` ( G |`s ( T .(+) U ) ) ) ) |
| 28 | 27 | feq2d | |- ( ph -> ( ( T P U ) : ( T .(+) U ) --> ( Base ` G ) <-> ( T P U ) : ( Base ` ( G |`s ( T .(+) U ) ) ) --> ( Base ` G ) ) ) |
| 29 | 25 28 | mpbid | |- ( ph -> ( T P U ) : ( Base ` ( G |`s ( T .(+) U ) ) ) --> ( Base ` G ) ) |
| 30 | 27 | eleq2d | |- ( ph -> ( x e. ( T .(+) U ) <-> x e. ( Base ` ( G |`s ( T .(+) U ) ) ) ) ) |
| 31 | 27 | eleq2d | |- ( ph -> ( y e. ( T .(+) U ) <-> y e. ( Base ` ( G |`s ( T .(+) U ) ) ) ) ) |
| 32 | 30 31 | anbi12d | |- ( ph -> ( ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) <-> ( x e. ( Base ` ( G |`s ( T .(+) U ) ) ) /\ y e. ( Base ` ( G |`s ( T .(+) U ) ) ) ) ) ) |
| 33 | 32 | biimpar | |- ( ( ph /\ ( x e. ( Base ` ( G |`s ( T .(+) U ) ) ) /\ y e. ( Base ` ( G |`s ( T .(+) U ) ) ) ) ) -> ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) |
| 34 | 1 2 3 4 5 6 7 8 9 | pj1id | |- ( ( ph /\ x e. ( T .(+) U ) ) -> x = ( ( ( T P U ) ` x ) .+ ( ( U P T ) ` x ) ) ) |
| 35 | 34 | adantrr | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> x = ( ( ( T P U ) ` x ) .+ ( ( U P T ) ` x ) ) ) |
| 36 | 1 2 3 4 5 6 7 8 9 | pj1id | |- ( ( ph /\ y e. ( T .(+) U ) ) -> y = ( ( ( T P U ) ` y ) .+ ( ( U P T ) ` y ) ) ) |
| 37 | 36 | adantrl | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> y = ( ( ( T P U ) ` y ) .+ ( ( U P T ) ` y ) ) ) |
| 38 | 35 37 | oveq12d | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( x .+ y ) = ( ( ( ( T P U ) ` x ) .+ ( ( U P T ) ` x ) ) .+ ( ( ( T P U ) ` y ) .+ ( ( U P T ) ` y ) ) ) ) |
| 39 | 5 | adantr | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> T e. ( SubGrp ` G ) ) |
| 40 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 41 | 39 20 40 | 3syl | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> G e. Mnd ) |
| 42 | 39 23 | syl | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> T C_ ( Base ` G ) ) |
| 43 | simpl | |- ( ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) -> x e. ( T .(+) U ) ) |
|
| 44 | ffvelcdm | |- ( ( ( T P U ) : ( T .(+) U ) --> T /\ x e. ( T .(+) U ) ) -> ( ( T P U ) ` x ) e. T ) |
|
| 45 | 22 43 44 | syl2an | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( T P U ) ` x ) e. T ) |
| 46 | 42 45 | sseldd | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( T P U ) ` x ) e. ( Base ` G ) ) |
| 47 | simpr | |- ( ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) -> y e. ( T .(+) U ) ) |
|
| 48 | ffvelcdm | |- ( ( ( T P U ) : ( T .(+) U ) --> T /\ y e. ( T .(+) U ) ) -> ( ( T P U ) ` y ) e. T ) |
|
| 49 | 22 47 48 | syl2an | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( T P U ) ` y ) e. T ) |
| 50 | 42 49 | sseldd | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( T P U ) ` y ) e. ( Base ` G ) ) |
| 51 | 6 | adantr | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> U e. ( SubGrp ` G ) ) |
| 52 | 11 | subgss | |- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
| 53 | 51 52 | syl | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> U C_ ( Base ` G ) ) |
| 54 | 1 2 3 4 5 6 7 8 9 | pj2f | |- ( ph -> ( U P T ) : ( T .(+) U ) --> U ) |
| 55 | ffvelcdm | |- ( ( ( U P T ) : ( T .(+) U ) --> U /\ x e. ( T .(+) U ) ) -> ( ( U P T ) ` x ) e. U ) |
|
| 56 | 54 43 55 | syl2an | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( U P T ) ` x ) e. U ) |
| 57 | 53 56 | sseldd | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( U P T ) ` x ) e. ( Base ` G ) ) |
| 58 | ffvelcdm | |- ( ( ( U P T ) : ( T .(+) U ) --> U /\ y e. ( T .(+) U ) ) -> ( ( U P T ) ` y ) e. U ) |
|
| 59 | 54 47 58 | syl2an | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( U P T ) ` y ) e. U ) |
| 60 | 53 59 | sseldd | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( U P T ) ` y ) e. ( Base ` G ) ) |
| 61 | 8 | adantr | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> T C_ ( Z ` U ) ) |
| 62 | 61 49 | sseldd | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( T P U ) ` y ) e. ( Z ` U ) ) |
| 63 | 1 4 | cntzi | |- ( ( ( ( T P U ) ` y ) e. ( Z ` U ) /\ ( ( U P T ) ` x ) e. U ) -> ( ( ( T P U ) ` y ) .+ ( ( U P T ) ` x ) ) = ( ( ( U P T ) ` x ) .+ ( ( T P U ) ` y ) ) ) |
| 64 | 62 56 63 | syl2anc | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( ( T P U ) ` y ) .+ ( ( U P T ) ` x ) ) = ( ( ( U P T ) ` x ) .+ ( ( T P U ) ` y ) ) ) |
| 65 | 11 1 41 46 50 57 60 64 | mnd4g | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( ( ( T P U ) ` x ) .+ ( ( T P U ) ` y ) ) .+ ( ( ( U P T ) ` x ) .+ ( ( U P T ) ` y ) ) ) = ( ( ( ( T P U ) ` x ) .+ ( ( U P T ) ` x ) ) .+ ( ( ( T P U ) ` y ) .+ ( ( U P T ) ` y ) ) ) ) |
| 66 | 38 65 | eqtr4d | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( x .+ y ) = ( ( ( ( T P U ) ` x ) .+ ( ( T P U ) ` y ) ) .+ ( ( ( U P T ) ` x ) .+ ( ( U P T ) ` y ) ) ) ) |
| 67 | 7 | adantr | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( T i^i U ) = { .0. } ) |
| 68 | 1 | subgcl | |- ( ( ( T .(+) U ) e. ( SubGrp ` G ) /\ x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) -> ( x .+ y ) e. ( T .(+) U ) ) |
| 69 | 68 | 3expb | |- ( ( ( T .(+) U ) e. ( SubGrp ` G ) /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( x .+ y ) e. ( T .(+) U ) ) |
| 70 | 17 69 | sylan | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( x .+ y ) e. ( T .(+) U ) ) |
| 71 | 1 | subgcl | |- ( ( T e. ( SubGrp ` G ) /\ ( ( T P U ) ` x ) e. T /\ ( ( T P U ) ` y ) e. T ) -> ( ( ( T P U ) ` x ) .+ ( ( T P U ) ` y ) ) e. T ) |
| 72 | 39 45 49 71 | syl3anc | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( ( T P U ) ` x ) .+ ( ( T P U ) ` y ) ) e. T ) |
| 73 | 1 | subgcl | |- ( ( U e. ( SubGrp ` G ) /\ ( ( U P T ) ` x ) e. U /\ ( ( U P T ) ` y ) e. U ) -> ( ( ( U P T ) ` x ) .+ ( ( U P T ) ` y ) ) e. U ) |
| 74 | 51 56 59 73 | syl3anc | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( ( U P T ) ` x ) .+ ( ( U P T ) ` y ) ) e. U ) |
| 75 | 1 2 3 4 39 51 67 61 9 70 72 74 | pj1eq | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( x .+ y ) = ( ( ( ( T P U ) ` x ) .+ ( ( T P U ) ` y ) ) .+ ( ( ( U P T ) ` x ) .+ ( ( U P T ) ` y ) ) ) <-> ( ( ( T P U ) ` ( x .+ y ) ) = ( ( ( T P U ) ` x ) .+ ( ( T P U ) ` y ) ) /\ ( ( U P T ) ` ( x .+ y ) ) = ( ( ( U P T ) ` x ) .+ ( ( U P T ) ` y ) ) ) ) ) |
| 76 | 66 75 | mpbid | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( ( T P U ) ` ( x .+ y ) ) = ( ( ( T P U ) ` x ) .+ ( ( T P U ) ` y ) ) /\ ( ( U P T ) ` ( x .+ y ) ) = ( ( ( U P T ) ` x ) .+ ( ( U P T ) ` y ) ) ) ) |
| 77 | 76 | simpld | |- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( T P U ) ` ( x .+ y ) ) = ( ( ( T P U ) ` x ) .+ ( ( T P U ) ` y ) ) ) |
| 78 | 33 77 | syldan | |- ( ( ph /\ ( x e. ( Base ` ( G |`s ( T .(+) U ) ) ) /\ y e. ( Base ` ( G |`s ( T .(+) U ) ) ) ) ) -> ( ( T P U ) ` ( x .+ y ) ) = ( ( ( T P U ) ` x ) .+ ( ( T P U ) ` y ) ) ) |
| 79 | 10 11 15 1 19 21 29 78 | isghmd | |- ( ph -> ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom G ) ) |