This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any element of a direct subspace sum can be decomposed uniquely into projections onto the left and right factors. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1eu.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| pj1eu.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| pj1eu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| pj1eu.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| pj1eu.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| pj1eu.3 | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| pj1eu.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | ||
| pj1eu.5 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | ||
| pj1f.p | ⊢ 𝑃 = ( proj1 ‘ 𝐺 ) | ||
| pj1eq.5 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) | ||
| pj1eq.6 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑇 ) | ||
| pj1eq.7 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) | ||
| Assertion | pj1eq | ⊢ ( 𝜑 → ( 𝑋 = ( 𝐵 + 𝐶 ) ↔ ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = 𝐵 ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) = 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1eu.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| 2 | pj1eu.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 3 | pj1eu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | pj1eu.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 5 | pj1eu.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 6 | pj1eu.3 | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 7 | pj1eu.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | |
| 8 | pj1eu.5 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | |
| 9 | pj1f.p | ⊢ 𝑃 = ( proj1 ‘ 𝐺 ) | |
| 10 | pj1eq.5 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) | |
| 11 | pj1eq.6 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑇 ) | |
| 12 | pj1eq.7 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) | |
| 13 | 1 2 3 4 5 6 7 8 9 | pj1id | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ) ) |
| 14 | 10 13 | mpdan | ⊢ ( 𝜑 → 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ) ) |
| 15 | 14 | eqeq1d | ⊢ ( 𝜑 → ( 𝑋 = ( 𝐵 + 𝐶 ) ↔ ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ) = ( 𝐵 + 𝐶 ) ) ) |
| 16 | 1 2 3 4 5 6 7 8 9 | pj1f | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑇 ) |
| 17 | 16 10 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) ∈ 𝑇 ) |
| 18 | 1 2 3 4 5 6 7 8 9 | pj2f | ⊢ ( 𝜑 → ( 𝑈 𝑃 𝑇 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑈 ) |
| 19 | 18 10 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ∈ 𝑈 ) |
| 20 | 1 3 4 5 6 7 8 17 11 19 12 | subgdisjb | ⊢ ( 𝜑 → ( ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ) = ( 𝐵 + 𝐶 ) ↔ ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = 𝐵 ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) = 𝐶 ) ) ) |
| 21 | 15 20 | bitrd | ⊢ ( 𝜑 → ( 𝑋 = ( 𝐵 + 𝐶 ) ↔ ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = 𝐵 ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) = 𝐶 ) ) ) |