This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any element of a direct subspace sum can be decomposed into projections onto the left and right factors. (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1eu.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| pj1eu.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| pj1eu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| pj1eu.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| pj1eu.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| pj1eu.3 | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| pj1eu.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | ||
| pj1eu.5 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | ||
| pj1f.p | ⊢ 𝑃 = ( proj1 ‘ 𝐺 ) | ||
| Assertion | pj1id | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1eu.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| 2 | pj1eu.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 3 | pj1eu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | pj1eu.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 5 | pj1eu.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 6 | pj1eu.3 | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 7 | pj1eu.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | |
| 8 | pj1eu.5 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | |
| 9 | pj1f.p | ⊢ 𝑃 = ( proj1 ‘ 𝐺 ) | |
| 10 | subgrcl | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 11 | 5 10 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 12 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 13 | 12 | subgss | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 14 | 5 13 | syl | ⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 15 | 12 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 16 | 6 15 | syl | ⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 17 | 11 14 16 | 3jca | ⊢ ( 𝜑 → ( 𝐺 ∈ Grp ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) ) |
| 18 | 12 1 2 9 | pj1val | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) ) |
| 19 | 17 18 | sylan | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) ) |
| 20 | 1 2 3 4 5 6 7 8 | pj1eu | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ∃! 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) |
| 21 | riotacl2 | ⊢ ( ∃! 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) → ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) ∈ { 𝑥 ∈ 𝑇 ∣ ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) } ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) ∈ { 𝑥 ∈ 𝑇 ∣ ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) } ) |
| 23 | 19 22 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) ∈ { 𝑥 ∈ 𝑇 ∣ ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) } ) |
| 24 | oveq1 | ⊢ ( 𝑥 = ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) → ( 𝑥 + 𝑦 ) = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) | |
| 25 | 24 | eqeq2d | ⊢ ( 𝑥 = ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) → ( 𝑋 = ( 𝑥 + 𝑦 ) ↔ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) |
| 26 | 25 | rexbidv | ⊢ ( 𝑥 = ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) → ( ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑈 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) |
| 27 | 26 | elrab | ⊢ ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) ∈ { 𝑥 ∈ 𝑇 ∣ ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) } ↔ ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) ∈ 𝑇 ∧ ∃ 𝑦 ∈ 𝑈 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) |
| 28 | 27 | simprbi | ⊢ ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) ∈ { 𝑥 ∈ 𝑇 ∣ ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) } → ∃ 𝑦 ∈ 𝑈 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) |
| 29 | 23 28 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ∃ 𝑦 ∈ 𝑈 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) |
| 30 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) | |
| 31 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → 𝐺 ∈ Grp ) |
| 32 | 16 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 33 | 14 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 34 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) | |
| 35 | 2 4 | lsmcom2 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |
| 36 | 5 6 8 35 | syl3anc | ⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |
| 37 | 36 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → ( 𝑇 ⊕ 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |
| 38 | 34 37 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → 𝑋 ∈ ( 𝑈 ⊕ 𝑇 ) ) |
| 39 | 12 1 2 9 | pj1val | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ) ∧ 𝑋 ∈ ( 𝑈 ⊕ 𝑇 ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) = ( ℩ 𝑢 ∈ 𝑈 ∃ 𝑣 ∈ 𝑇 𝑋 = ( 𝑢 + 𝑣 ) ) ) |
| 40 | 31 32 33 38 39 | syl31anc | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) = ( ℩ 𝑢 ∈ 𝑈 ∃ 𝑣 ∈ 𝑇 𝑋 = ( 𝑢 + 𝑣 ) ) ) |
| 41 | 1 2 3 4 5 6 7 8 9 | pj1f | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑇 ) |
| 42 | 41 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑇 ) |
| 43 | 42 34 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) ∈ 𝑇 ) |
| 44 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
| 45 | 44 43 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) ∈ ( 𝑍 ‘ 𝑈 ) ) |
| 46 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → 𝑦 ∈ 𝑈 ) | |
| 47 | 1 4 | cntzi | ⊢ ( ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) ∈ ( 𝑍 ‘ 𝑈 ) ∧ 𝑦 ∈ 𝑈 ) → ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) = ( 𝑦 + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) ) ) |
| 48 | 45 46 47 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) = ( 𝑦 + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) ) ) |
| 49 | 30 48 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → 𝑋 = ( 𝑦 + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) ) ) |
| 50 | oveq2 | ⊢ ( 𝑣 = ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) → ( 𝑦 + 𝑣 ) = ( 𝑦 + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) ) ) | |
| 51 | 50 | rspceeqv | ⊢ ( ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) ∈ 𝑇 ∧ 𝑋 = ( 𝑦 + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) ) ) → ∃ 𝑣 ∈ 𝑇 𝑋 = ( 𝑦 + 𝑣 ) ) |
| 52 | 43 49 51 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → ∃ 𝑣 ∈ 𝑇 𝑋 = ( 𝑦 + 𝑣 ) ) |
| 53 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → 𝜑 ) | |
| 54 | incom | ⊢ ( 𝑈 ∩ 𝑇 ) = ( 𝑇 ∩ 𝑈 ) | |
| 55 | 54 7 | eqtrid | ⊢ ( 𝜑 → ( 𝑈 ∩ 𝑇 ) = { 0 } ) |
| 56 | 4 5 6 8 | cntzrecd | ⊢ ( 𝜑 → 𝑈 ⊆ ( 𝑍 ‘ 𝑇 ) ) |
| 57 | 1 2 3 4 6 5 55 56 | pj1eu | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑈 ⊕ 𝑇 ) ) → ∃! 𝑢 ∈ 𝑈 ∃ 𝑣 ∈ 𝑇 𝑋 = ( 𝑢 + 𝑣 ) ) |
| 58 | 53 38 57 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → ∃! 𝑢 ∈ 𝑈 ∃ 𝑣 ∈ 𝑇 𝑋 = ( 𝑢 + 𝑣 ) ) |
| 59 | oveq1 | ⊢ ( 𝑢 = 𝑦 → ( 𝑢 + 𝑣 ) = ( 𝑦 + 𝑣 ) ) | |
| 60 | 59 | eqeq2d | ⊢ ( 𝑢 = 𝑦 → ( 𝑋 = ( 𝑢 + 𝑣 ) ↔ 𝑋 = ( 𝑦 + 𝑣 ) ) ) |
| 61 | 60 | rexbidv | ⊢ ( 𝑢 = 𝑦 → ( ∃ 𝑣 ∈ 𝑇 𝑋 = ( 𝑢 + 𝑣 ) ↔ ∃ 𝑣 ∈ 𝑇 𝑋 = ( 𝑦 + 𝑣 ) ) ) |
| 62 | 61 | riota2 | ⊢ ( ( 𝑦 ∈ 𝑈 ∧ ∃! 𝑢 ∈ 𝑈 ∃ 𝑣 ∈ 𝑇 𝑋 = ( 𝑢 + 𝑣 ) ) → ( ∃ 𝑣 ∈ 𝑇 𝑋 = ( 𝑦 + 𝑣 ) ↔ ( ℩ 𝑢 ∈ 𝑈 ∃ 𝑣 ∈ 𝑇 𝑋 = ( 𝑢 + 𝑣 ) ) = 𝑦 ) ) |
| 63 | 46 58 62 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → ( ∃ 𝑣 ∈ 𝑇 𝑋 = ( 𝑦 + 𝑣 ) ↔ ( ℩ 𝑢 ∈ 𝑈 ∃ 𝑣 ∈ 𝑇 𝑋 = ( 𝑢 + 𝑣 ) ) = 𝑦 ) ) |
| 64 | 52 63 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → ( ℩ 𝑢 ∈ 𝑈 ∃ 𝑣 ∈ 𝑇 𝑋 = ( 𝑢 + 𝑣 ) ) = 𝑦 ) |
| 65 | 40 64 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) = 𝑦 ) |
| 66 | 65 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ) = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) |
| 67 | 30 66 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + 𝑦 ) ) ) → 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ) ) |
| 68 | 29 67 | rexlimddv | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ) ) |