This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The right projection function maps a direct subspace sum onto the right factor. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1eu.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| pj1eu.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| pj1eu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| pj1eu.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| pj1eu.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| pj1eu.3 | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| pj1eu.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | ||
| pj1eu.5 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | ||
| pj1f.p | ⊢ 𝑃 = ( proj1 ‘ 𝐺 ) | ||
| Assertion | pj2f | ⊢ ( 𝜑 → ( 𝑈 𝑃 𝑇 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1eu.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| 2 | pj1eu.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 3 | pj1eu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | pj1eu.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 5 | pj1eu.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 6 | pj1eu.3 | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 7 | pj1eu.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | |
| 8 | pj1eu.5 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | |
| 9 | pj1f.p | ⊢ 𝑃 = ( proj1 ‘ 𝐺 ) | |
| 10 | incom | ⊢ ( 𝑈 ∩ 𝑇 ) = ( 𝑇 ∩ 𝑈 ) | |
| 11 | 10 7 | eqtrid | ⊢ ( 𝜑 → ( 𝑈 ∩ 𝑇 ) = { 0 } ) |
| 12 | 4 5 6 8 | cntzrecd | ⊢ ( 𝜑 → 𝑈 ⊆ ( 𝑍 ‘ 𝑇 ) ) |
| 13 | 1 2 3 4 6 5 11 12 9 | pj1f | ⊢ ( 𝜑 → ( 𝑈 𝑃 𝑇 ) : ( 𝑈 ⊕ 𝑇 ) ⟶ 𝑈 ) |
| 14 | 2 4 | lsmcom2 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |
| 15 | 5 6 8 14 | syl3anc | ⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |
| 16 | 15 | feq2d | ⊢ ( 𝜑 → ( ( 𝑈 𝑃 𝑇 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑈 ↔ ( 𝑈 𝑃 𝑇 ) : ( 𝑈 ⊕ 𝑇 ) ⟶ 𝑈 ) ) |
| 17 | 13 16 | mpbird | ⊢ ( 𝜑 → ( 𝑈 𝑃 𝑇 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑈 ) |