This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1eu.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| pj1eu.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| pj1eu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| pj1eu.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| pj1eu.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| pj1eu.3 | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| pj1eu.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | ||
| pj1eu.5 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | ||
| pj1f.p | ⊢ 𝑃 = ( proj1 ‘ 𝐺 ) | ||
| Assertion | pj1ghm2 | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom ( 𝐺 ↾s 𝑇 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1eu.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| 2 | pj1eu.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 3 | pj1eu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | pj1eu.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 5 | pj1eu.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 6 | pj1eu.3 | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 7 | pj1eu.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | |
| 8 | pj1eu.5 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | |
| 9 | pj1f.p | ⊢ 𝑃 = ( proj1 ‘ 𝐺 ) | |
| 10 | 1 2 3 4 5 6 7 8 9 | pj1ghm | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom 𝐺 ) ) |
| 11 | 1 2 3 4 5 6 7 8 9 | pj1f | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑇 ) |
| 12 | 11 | frnd | ⊢ ( 𝜑 → ran ( 𝑇 𝑃 𝑈 ) ⊆ 𝑇 ) |
| 13 | eqid | ⊢ ( 𝐺 ↾s 𝑇 ) = ( 𝐺 ↾s 𝑇 ) | |
| 14 | 13 | resghm2b | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ ran ( 𝑇 𝑃 𝑈 ) ⊆ 𝑇 ) → ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom 𝐺 ) ↔ ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom ( 𝐺 ↾s 𝑇 ) ) ) ) |
| 15 | 5 12 14 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom 𝐺 ) ↔ ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom ( 𝐺 ↾s 𝑇 ) ) ) ) |
| 16 | 10 15 | mpbid | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom ( 𝐺 ↾s 𝑇 ) ) ) |