This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left projection function maps a direct subspace sum onto the left factor. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1eu.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| pj1eu.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| pj1eu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| pj1eu.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| pj1eu.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| pj1eu.3 | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| pj1eu.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | ||
| pj1eu.5 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | ||
| pj1f.p | ⊢ 𝑃 = ( proj1 ‘ 𝐺 ) | ||
| Assertion | pj1f | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1eu.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| 2 | pj1eu.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 3 | pj1eu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | pj1eu.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 5 | pj1eu.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 6 | pj1eu.3 | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 7 | pj1eu.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | |
| 8 | pj1eu.5 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | |
| 9 | pj1f.p | ⊢ 𝑃 = ( proj1 ‘ 𝐺 ) | |
| 10 | subgrcl | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 11 | 5 10 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 12 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 13 | 12 | subgss | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 14 | 5 13 | syl | ⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 15 | 12 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 16 | 6 15 | syl | ⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 17 | 12 1 2 9 | pj1fval | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑇 𝑃 𝑈 ) = ( 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ↦ ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) |
| 18 | 11 14 16 17 | syl3anc | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) = ( 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ↦ ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) |
| 19 | 1 2 3 4 5 6 7 8 | pj1eu | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ∃! 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) |
| 20 | riotacl | ⊢ ( ∃! 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) → ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ∈ 𝑇 ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ∈ 𝑇 ) |
| 22 | 18 21 | fmpt3d | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑇 ) |