This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pire , pigt2lt4 and sinpi . Existence part. (Contributed by Paul Chapman, 23-Jan-2008) (Proof shortened by Mario Carneiro, 18-Jun-2014) (Revised by AV, 14-Sep-2020) (Proof shortened by BJ, 30-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pilem3 | ⊢ ( π ∈ ( 2 (,) 4 ) ∧ ( sin ‘ π ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re | ⊢ 2 ∈ ℝ | |
| 2 | 1 | a1i | ⊢ ( ⊤ → 2 ∈ ℝ ) |
| 3 | 4re | ⊢ 4 ∈ ℝ | |
| 4 | 3 | a1i | ⊢ ( ⊤ → 4 ∈ ℝ ) |
| 5 | 0red | ⊢ ( ⊤ → 0 ∈ ℝ ) | |
| 6 | 2lt4 | ⊢ 2 < 4 | |
| 7 | 6 | a1i | ⊢ ( ⊤ → 2 < 4 ) |
| 8 | iccssre | ⊢ ( ( 2 ∈ ℝ ∧ 4 ∈ ℝ ) → ( 2 [,] 4 ) ⊆ ℝ ) | |
| 9 | 1 3 8 | mp2an | ⊢ ( 2 [,] 4 ) ⊆ ℝ |
| 10 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 11 | 9 10 | sstri | ⊢ ( 2 [,] 4 ) ⊆ ℂ |
| 12 | 11 | a1i | ⊢ ( ⊤ → ( 2 [,] 4 ) ⊆ ℂ ) |
| 13 | sincn | ⊢ sin ∈ ( ℂ –cn→ ℂ ) | |
| 14 | 13 | a1i | ⊢ ( ⊤ → sin ∈ ( ℂ –cn→ ℂ ) ) |
| 15 | 9 | sseli | ⊢ ( 𝑦 ∈ ( 2 [,] 4 ) → 𝑦 ∈ ℝ ) |
| 16 | 15 | resincld | ⊢ ( 𝑦 ∈ ( 2 [,] 4 ) → ( sin ‘ 𝑦 ) ∈ ℝ ) |
| 17 | 16 | adantl | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 2 [,] 4 ) ) → ( sin ‘ 𝑦 ) ∈ ℝ ) |
| 18 | sin4lt0 | ⊢ ( sin ‘ 4 ) < 0 | |
| 19 | sincos2sgn | ⊢ ( 0 < ( sin ‘ 2 ) ∧ ( cos ‘ 2 ) < 0 ) | |
| 20 | 19 | simpli | ⊢ 0 < ( sin ‘ 2 ) |
| 21 | 18 20 | pm3.2i | ⊢ ( ( sin ‘ 4 ) < 0 ∧ 0 < ( sin ‘ 2 ) ) |
| 22 | 21 | a1i | ⊢ ( ⊤ → ( ( sin ‘ 4 ) < 0 ∧ 0 < ( sin ‘ 2 ) ) ) |
| 23 | 2 4 5 7 12 14 17 22 | ivth2 | ⊢ ( ⊤ → ∃ 𝑥 ∈ ( 2 (,) 4 ) ( sin ‘ 𝑥 ) = 0 ) |
| 24 | 23 | mptru | ⊢ ∃ 𝑥 ∈ ( 2 (,) 4 ) ( sin ‘ 𝑥 ) = 0 |
| 25 | df-pi | ⊢ π = inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) | |
| 26 | inss1 | ⊢ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ+ | |
| 27 | rpssre | ⊢ ℝ+ ⊆ ℝ | |
| 28 | 26 27 | sstri | ⊢ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ |
| 29 | 0re | ⊢ 0 ∈ ℝ | |
| 30 | 26 | sseli | ⊢ ( 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) → 𝑧 ∈ ℝ+ ) |
| 31 | 30 | rpge0d | ⊢ ( 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) → 0 ≤ 𝑧 ) |
| 32 | 31 | rgen | ⊢ ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 0 ≤ 𝑧 |
| 33 | breq1 | ⊢ ( 𝑦 = 0 → ( 𝑦 ≤ 𝑧 ↔ 0 ≤ 𝑧 ) ) | |
| 34 | 33 | ralbidv | ⊢ ( 𝑦 = 0 → ( ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑦 ≤ 𝑧 ↔ ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 0 ≤ 𝑧 ) ) |
| 35 | 34 | rspcev | ⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 0 ≤ 𝑧 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑦 ≤ 𝑧 ) |
| 36 | 29 32 35 | mp2an | ⊢ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑦 ≤ 𝑧 |
| 37 | elioore | ⊢ ( 𝑥 ∈ ( 2 (,) 4 ) → 𝑥 ∈ ℝ ) | |
| 38 | 37 | adantr | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 𝑥 ∈ ℝ ) |
| 39 | 0red | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 0 ∈ ℝ ) | |
| 40 | 1 | a1i | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 2 ∈ ℝ ) |
| 41 | 2pos | ⊢ 0 < 2 | |
| 42 | 41 | a1i | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 0 < 2 ) |
| 43 | eliooord | ⊢ ( 𝑥 ∈ ( 2 (,) 4 ) → ( 2 < 𝑥 ∧ 𝑥 < 4 ) ) | |
| 44 | 43 | simpld | ⊢ ( 𝑥 ∈ ( 2 (,) 4 ) → 2 < 𝑥 ) |
| 45 | 44 | adantr | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 2 < 𝑥 ) |
| 46 | 39 40 38 42 45 | lttrd | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 0 < 𝑥 ) |
| 47 | 38 46 | elrpd | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 𝑥 ∈ ℝ+ ) |
| 48 | simpr | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( sin ‘ 𝑥 ) = 0 ) | |
| 49 | pilem1 | ⊢ ( 𝑥 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ↔ ( 𝑥 ∈ ℝ+ ∧ ( sin ‘ 𝑥 ) = 0 ) ) | |
| 50 | 47 48 49 | sylanbrc | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 𝑥 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) |
| 51 | infrelb | ⊢ ( ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑦 ≤ 𝑧 ∧ 𝑥 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ≤ 𝑥 ) | |
| 52 | 28 36 50 51 | mp3an12i | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ≤ 𝑥 ) |
| 53 | 25 52 | eqbrtrid | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → π ≤ 𝑥 ) |
| 54 | simpll | ⊢ ( ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) ∧ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → 𝑥 ∈ ( 2 (,) 4 ) ) | |
| 55 | simpr | ⊢ ( ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) ∧ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) | |
| 56 | pilem1 | ⊢ ( 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ↔ ( 𝑦 ∈ ℝ+ ∧ ( sin ‘ 𝑦 ) = 0 ) ) | |
| 57 | 55 56 | sylib | ⊢ ( ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) ∧ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → ( 𝑦 ∈ ℝ+ ∧ ( sin ‘ 𝑦 ) = 0 ) ) |
| 58 | 57 | simpld | ⊢ ( ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) ∧ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → 𝑦 ∈ ℝ+ ) |
| 59 | simplr | ⊢ ( ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) ∧ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → ( sin ‘ 𝑥 ) = 0 ) | |
| 60 | 57 | simprd | ⊢ ( ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) ∧ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → ( sin ‘ 𝑦 ) = 0 ) |
| 61 | 54 58 59 60 | pilem2 | ⊢ ( ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) ∧ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → ( ( π + 𝑥 ) / 2 ) ≤ 𝑦 ) |
| 62 | 61 | ralrimiva | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ( ( π + 𝑥 ) / 2 ) ≤ 𝑦 ) |
| 63 | 28 | a1i | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ ) |
| 64 | 50 | ne0d | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ≠ ∅ ) |
| 65 | 36 | a1i | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑦 ≤ 𝑧 ) |
| 66 | infrecl | ⊢ ( ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ ∧ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑦 ≤ 𝑧 ) → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ∈ ℝ ) | |
| 67 | 28 36 66 | mp3an13 | ⊢ ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ≠ ∅ → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ∈ ℝ ) |
| 68 | 64 67 | syl | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ∈ ℝ ) |
| 69 | 25 68 | eqeltrid | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → π ∈ ℝ ) |
| 70 | 69 38 | readdcld | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( π + 𝑥 ) ∈ ℝ ) |
| 71 | 70 | rehalfcld | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( ( π + 𝑥 ) / 2 ) ∈ ℝ ) |
| 72 | infregelb | ⊢ ( ( ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ ∧ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑦 ≤ 𝑧 ) ∧ ( ( π + 𝑥 ) / 2 ) ∈ ℝ ) → ( ( ( π + 𝑥 ) / 2 ) ≤ inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ↔ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ( ( π + 𝑥 ) / 2 ) ≤ 𝑦 ) ) | |
| 73 | 63 64 65 71 72 | syl31anc | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( ( ( π + 𝑥 ) / 2 ) ≤ inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ↔ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ( ( π + 𝑥 ) / 2 ) ≤ 𝑦 ) ) |
| 74 | 62 73 | mpbird | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( ( π + 𝑥 ) / 2 ) ≤ inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ) |
| 75 | 74 25 | breqtrrdi | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( ( π + 𝑥 ) / 2 ) ≤ π ) |
| 76 | 69 | recnd | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → π ∈ ℂ ) |
| 77 | 38 | recnd | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 𝑥 ∈ ℂ ) |
| 78 | 76 77 | addcomd | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( π + 𝑥 ) = ( 𝑥 + π ) ) |
| 79 | 78 | oveq1d | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( ( π + 𝑥 ) / 2 ) = ( ( 𝑥 + π ) / 2 ) ) |
| 80 | 79 | breq1d | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( ( ( π + 𝑥 ) / 2 ) ≤ π ↔ ( ( 𝑥 + π ) / 2 ) ≤ π ) ) |
| 81 | avgle2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ π ∈ ℝ ) → ( 𝑥 ≤ π ↔ ( ( 𝑥 + π ) / 2 ) ≤ π ) ) | |
| 82 | 38 69 81 | syl2anc | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( 𝑥 ≤ π ↔ ( ( 𝑥 + π ) / 2 ) ≤ π ) ) |
| 83 | 80 82 | bitr4d | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( ( ( π + 𝑥 ) / 2 ) ≤ π ↔ 𝑥 ≤ π ) ) |
| 84 | 75 83 | mpbid | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 𝑥 ≤ π ) |
| 85 | 69 38 | letri3d | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( π = 𝑥 ↔ ( π ≤ 𝑥 ∧ 𝑥 ≤ π ) ) ) |
| 86 | 53 84 85 | mpbir2and | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → π = 𝑥 ) |
| 87 | simpl | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 𝑥 ∈ ( 2 (,) 4 ) ) | |
| 88 | 86 87 | eqeltrd | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → π ∈ ( 2 (,) 4 ) ) |
| 89 | 86 | fveq2d | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( sin ‘ π ) = ( sin ‘ 𝑥 ) ) |
| 90 | 89 48 | eqtrd | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( sin ‘ π ) = 0 ) |
| 91 | 88 90 | jca | ⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( π ∈ ( 2 (,) 4 ) ∧ ( sin ‘ π ) = 0 ) ) |
| 92 | 91 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ ( 2 (,) 4 ) ( sin ‘ 𝑥 ) = 0 → ( π ∈ ( 2 (,) 4 ) ∧ ( sin ‘ π ) = 0 ) ) |
| 93 | 24 92 | ax-mp | ⊢ ( π ∈ ( 2 (,) 4 ) ∧ ( sin ‘ π ) = 0 ) |