This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for average. (Contributed by Jeff Hankins, 15-Sep-2013) (Revised by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | avgle2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) ≤ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | avglt1 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ 𝐵 < ( ( 𝐵 + 𝐴 ) / 2 ) ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ 𝐵 < ( ( 𝐵 + 𝐴 ) / 2 ) ) ) |
| 3 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 4 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 5 | addcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) | |
| 6 | 3 4 5 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
| 7 | 6 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) / 2 ) = ( ( 𝐵 + 𝐴 ) / 2 ) ) |
| 8 | 7 | breq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < ( ( 𝐴 + 𝐵 ) / 2 ) ↔ 𝐵 < ( ( 𝐵 + 𝐴 ) / 2 ) ) ) |
| 9 | 2 8 | bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ 𝐵 < ( ( 𝐴 + 𝐵 ) / 2 ) ) ) |
| 10 | 9 | notbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐵 < 𝐴 ↔ ¬ 𝐵 < ( ( 𝐴 + 𝐵 ) / 2 ) ) ) |
| 11 | lenlt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) | |
| 12 | readdcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) | |
| 13 | rehalfcl | ⊢ ( ( 𝐴 + 𝐵 ) ∈ ℝ → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℝ ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℝ ) |
| 15 | lenlt | ⊢ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + 𝐵 ) / 2 ) ≤ 𝐵 ↔ ¬ 𝐵 < ( ( 𝐴 + 𝐵 ) / 2 ) ) ) | |
| 16 | 14 15 | sylancom | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + 𝐵 ) / 2 ) ≤ 𝐵 ↔ ¬ 𝐵 < ( ( 𝐴 + 𝐵 ) / 2 ) ) ) |
| 17 | 10 11 16 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) ≤ 𝐵 ) ) |